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Introduction

Almost every device or electronic gadget from pocket knife to cellphone has the ca-
pacity to store data, whether this may be useful or not. Furthermore, we, the users of
e.g. hard drive based mp3/multimedia-players want to download as much music as
possible, and, in future, even movies in the shortest possible time. This desire requires
the development of faster reacting devices, in other words, hard drives with the ability
to switch magnetization directions faster and faster. In order to be able to develop
such devices more knowledge about the behavior and the properties of magnetization
dynamics is needed.

The nanosecond regime is the timescale, that will be approached by magnetic mem-
ory devices in near future. For that reason fundamental research and knowledge of the
magnetization behavior in this area is necessary. All-optical pump-probe experiments
with ultra short laser pulses in the femtosecond-range are a powerful tool to gain an
inside view into the behavior of the magnetization in ferromagnets on timescales up
to one nanosecond after excitation. The experimental setup usually works, briefly de-
scribed, as follows. A ferromagnetic sample is located in a constant external magnetic
field. This external field forces the sample magnetization to line up with it. Two laser
pulses, one a pump pulse, the other a probe pulse, arrive time delayed at the surface of
the ferromagnetic sample. First the pump pulse excites the electrons. This excitation
results in a process called demagnetization. Then the magnetization dynamics is fol-
lowed by the probe pulse with a time delay constantly growing up to one nanosecond
after demagnetization. This change is measured by the magneto-optical Kerr effect
(MOKE) which is a common technique used by researchers studying the properties of
thin film ferromagnetic materials.

What can be observed in these experiments is also a precession of the magnetization
around its original direction. This precession is damped, and leads to the alignment
of the magnetization M with the external field H, pointing in the original direction.
This process is described by the LANDAU-LIFSHITZ-GILBERT equation, the equation
of motion for spins. The damping limits the speed of the magnetization switching,
therefore it is important to investigate it. In order to be able and compare different
measurement techniques, magnetization damping is expressed by the dimensionless
GILBERT-DAMPING parameter α. An interesting fact is that the GILBERT-DAMPING can
be affected by nonmagnetic damping materials. This gives two possibilities, how these
damping materials can be applied. They can be either alloyed into the ferromagnetic
layer (local GILBERT-DAMPING) or they can be positioned as a separate layer on top of
the ferromagnetic layer (non-local GILBERT-DAMPING).

This thesis examines both these methods of damping enhancement. First the in-
trinsic damping of nickel is introduced. For this purpose, a nickel-wedge has been
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prepared, to investigate the dependence of α on the nickel thickness. After this, a
nickel wedge with a constant vanadium layer on top will be discussed, to provide the
dependency of the damping on the nickel thickness. Additionally a constant nickel
layer, covered with a vanadium wedge will give some information about the depen-
dency of damping on the damping layer thickness. These last two samples exemplify
non-local Gilbert damping. Besides this, the damping of permalloy samples alloyed
with different amounts of palladium and dysprosium as damping material is investi-
gated. These will give some understanding of the local Gilbert damping mechanism.

The first chapter of this thesis gives an overview about the theoretical background
of magnetization dynamics. It introduces the Landau-Lifshitz-Gilbert equation from
the quantum mechanical as well as from the classical point of view. Damping is intro-
duced in a phenomenological way. Further, the precession frequency and the damping
parameter α are analyzed for the specifications of the examined samples.

The second chapter describes the composition of the experimental setup and how
the components work with and depend on each other. In addition to this, this chapter
is devoted to the measuring techniques used in the experiments, the magneto-optical
Kerr-effect (MOKE) and the time resolved MOKE.

The third chapter shortly introduces the analyzed samples, by giving information
about the production process and techniques. Apart from this, the samples geometrical
characteristics and layer properties are explained.

In the fourth chapter, first the theoretical models for the processes involved into
magnetization precession damping are given, and then the experimental data is in-
troduced and analyzed. Beginning with the non-local Gilbert damping measurement
results, and then inspecting and discussing the results of the local damping measure-
ments.

The final fifth chapter gives an outlook, to provide a context for this thesis. Fur-
thermore, it gives a short outline about samples that can be examined to continue this
work and other experiments, that can broaden the knowledge about the magnetization
dynamics.



1 Theoretical Foundations of Magnetization
Dynamics

1.1 Magnetization Precession and Macro Spin

The following chapter will introduce the phenomenon of magnetization precession
from the quantum mechanical point of view and connect it to the magnetization pre-
cession derived from classical electrodynamics.

1.1.1 Quantum Mechanical Point of View
In practice it is generally not possible to observe the precession of a single electron
spin. Therefore the MACRO SPIN-APPROXIMATION is used to describe the precession of
magnetization. This model assumes that the exchange energy couples all spins of a
sample strongly enough to act as one large single spin. According to quantum mechan-
ics, the spin is an observable, represented by an operator S. In order to gain the time
evolution of S, the Schrödinger equation needs to be stated in the Heisenberg picture
[17]. In this case the time derivation of the mean value of S equals the commutator
of S with the Hamiltonian H. The equation of motion is then derived, as was done in
[15], and reads

i�
d

dt
〈S〉 = 〈[S,H]〉 . (1.1)

If the spin interacts with a time dependent external magnetic field one can describe
the system using the Zeeman Hamiltonian

H = −gμB

�
S · B , where B = μ0H . (1.2)

We will discuss the prefactor of the dot product later and concentrate on the commu-
tator for now. First the commutator can be expressed giving the full components:

[S,H] = −gμB

�

⎛⎝[Sx, SxBx + SyBy + SzBz]
[Sy, SxBx + SyBy + SzBz]
[Sz, SxBx + SyBy + SzBz]

⎞⎠ (1.3)

Where the Si and Bi with i = x, y, z are time dependent. Then the expression of the
commutator can be summed up to

[S,H] = −gμB

�

⎛⎝By[Sx, Sy] + Bz[Sx, Sz]
Bx[Sy, Sx] + Bz[Sy, Sz]
Bx[Sz, Sx] + By[Sz, Sy]

⎞⎠ . (1.4)

11



12 1.1 Magnetization Precession and Macro Spin

With the commutator relations

[Sx, Sy] = i�Sz, [Sy, Sz] = i�Sx, [Sz, Sx] = i�Sy, (1.5)

a simple cross product relation is obtained:

[S,H] = −gμB

�
i�

⎛⎝BySz − BzSy

BzSx − BxSz

BxSy − BySx

⎞⎠ , (1.6)

which finally transforms to the equation of motion for a single spin:

d

dt
〈S〉 =

gμB

�
(〈S〉 × B). (1.7)

1.1.2 The Classical Equation of Motion
The equation of motion can additionally be derived from classical mechanics. Starting
with the dipole moment of a current loop as in [24]

|m| = μ0IS, (1.8)

with I being the current and S the area inside of the loop. The current can also be
seen as a charge q moving with the angular frequency ω along the loop I = q · ω/2π.
The area enclosed in this loop of radius r is S = r2π. This leads to the equation in
vector form

m =
qμ0

2
r2ω. (1.9)

Promptly, by assigning the charge q = −e for an electron, and since its position with
respect to the center of the loop is r, and its velocity v, and knowing v = ω × r the
relation

m = −eμ0

2
(r × ω) (1.10)

is obtained. In analogy to classical mechanics, where the angular momentum l of a
mass me circulating around the origin is

l = me(r × v) = mer
2ω. (1.11)

The magnetic momentum can now be expressed in terms of the classical momentum of
a circulating electron by combining the last two momenta. Consequently, the classical
relation

m = − eμ0

2me

l (1.12)

is acquired. In this case, the momentum m can be imagined as two magnetic charges
p+ and p− separated by a distance d being placed in line perpendicular to an external
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Figure 1.1: The force F acting on a dipole in an external field H, taken from [24]

field H, as depicted in figure 1.1. Under these circumstances, a force F + = p+H and,
respectively, F − = p−H is acting on each charge. The net force adds up to zero, but a
resulting torque T causes a rotation of the dipole towards the direction of the external
magnetic field. Finally the mechanical torque defined by

T = r × F . (1.13)

This implies, that a momentum exposed to a force experiences a torque demanding
the change of its direction. That the torque acting on a magnetic momentum m is
given by an equation similar to the definition above form classical mechanics, as was
derived in [24]

T = m × H . (1.14)

Moreover, per definition, the torque is the change of the momentum with time dl
dt

= T .
Combining this fact with equation 1.14 yields to

dl

dt
= T = m × H . (1.15)

Finally, as can be seen from equation 1.12, the magnetic momentum can be expressed
in terms of the angular momentum by a vector quantity. The relation is m = γl with
γ = −−egμ0

2me
= −gμBμ0

�
. All that needs to be done now is to substitute l and rewrite

equation 1.15 as
dm

dt
= γ[m × H ] = γT . (1.16)

In the end one question remains open: How does this equation transform for a spin
momentum? As will be seen in the next section, quantum mechanics is needed to
answer this question.
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1.1.3 Connecting Classical and Quantum Mechanical Magnetic
Moments

Equations 1.7 and 1.16 have a similar form, the difference between these two being
that, the former holds for a quantum mechanical spin, while the letter is derived in the
classical way for a magnetic moment. But still the explanation is missing, how these
to fit together. In other words, how equation 1.12 can be translated into quantum
mechanics.

In quantum mechanics the value of l cannot be measured directly, but only the
projection along the z axis, defined by the direction of the external field H. This axis
is also called the quantization axis. Therefore, only the expectation value of 〈lz〉 = �lz
for a single electron is detectable. This yields in the quantum relation for the magnetic
moment

〈mz〉 = − eμ0

2me

�lz (1.17)

where the prefactor eμ0�

2me
= μB is the BOHR MAGNETON. It has the same units as the

magnetic moment, so that the magnetic moment can be expressed in units of μB.
Relation 1.17 describes the quantum mechanical orbital magnetic momentum, which

can be expressed by its expectation value

〈mz
o〉 = −μB

�
< 〈lz〉 . (1.18)

In addition to the revolution on an orbit, the electron rotates around its own axis. This
motion causes an intrinsic angular momentum called spin. The spin has a half-integer
quantum number s = �

2
and its observable projections are sz = ±�

2
. One important

fact about the electron spin is that it generates a magnetic momentum of a full Bohr
magneton μB, even though it has only a spin of �

2
. Thus, the magnetic moment for the

spin reads

〈mz
s〉 = −2μB

�
〈sz〉 . (1.19)

In analogy to the orbital momentum the measured value of ms is determined by the
expectation value of the spin 〈sz〉 along the quantisation axis. On closer inspection the
spin does not generate one full magnetic moment in terms of μB. That’s why the factor
2 in equation 1.19 has to be corrected by g = 2.002319304386 for a free electron. The
exact value for the gyro magnetic moment g has to be determined from the relativistic
Schrödinger equation for a given environment. In solids the value of g can even go up
to 10. Using the g-factor the term for ms can be rewritten by

〈mz
s〉 = −gμB

�
〈sz〉 . (1.20)

The final step for obtaining the total magnetic moment 〈mtot〉 is simply adding the
orbital and the spin moment.

Now that the connection of the classical and the quantum mechanical magnetic
moment is accomplished, a subsequent examination of equation 1.16 can follow. To
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start with, equation 1.16 can be identified as equivalent to equation 1.7. The difference
in the notation comes from the assumption that the orbital momentum is about 103

weaker than spin momentum, so that solely the spin is relevant for the following
observations. The other difference is the prefactor, since m = γs we obtain the change
of the magnetic momentum in

dm

dt
= −γ[m × H ], (1.21)

where all subscripts of the total magnetic moment are neglected.
Before the final conclusions of equation 1.21 are drawn we will rearrange it one

last time. For this we need the magnetization M , defined as the sum of all magnetic
moments per unit volume

M =

∑
m

V
. (1.22)

The MACRO-SPIN model as mentioned in section 1.1.1 holds, since many magnetic
moments within a volume are examined. For these moments it is assumed to precess
rigidly coupled in the considered volume. At last equation 1.21 can be written for the
magnetization M

dM

dt
= −γ[M × H ]. (1.23)

This final equation is the LANDAU-LIFSHITZ equation of motion and describes the mo-
tion only phenomenologically.

Since the change of the magnetization dM is perpendicular both to M and H, in a
constant external magnetic field the following relations hold:

d

dt
M 2 = 0,

d

dt
[M · H ] = 0. (1.24)

This means that M precesses around the direction of H as shown in figure 1.2a).
The frequency of this precession is ω = γH where H is the amount of H. This fre-

quency is known as the LARMOR-FREQUENCY of the LARMOR-PRECESSION and is inde-
pendent from the angle between M and H. For a free electron it is ω = 28 MHz/mT,
which means that in a field of 1 T the magnetic moment needs ∼ 36 ps for one full
precession.

1.2 The Precession Damping

A simple model for precession damping can be found, on much larger time and length
scales, in a compass (a device with which most of those of us who went out camping
in the wild before the days of GPS will be quite familiar).

The compass needle is nothing but a magnetic dipole suspended in the earth’s mag-
netic field. Once the needle is turned out of its stationary position, it returns back,
but not immediately. It swings back and forth around the magnetic fields direction.
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Figure 1.2: Magnetization torque (a)) without damping, the magnetization M pre-
cesses around the H on a constant orbit. With damping (b)) the torque
pointing towards H forces the magnetization to align with the external
field.

For a small compass needle the magnetic field of the earth is considered, locally and
temporally, constant. The oscillation back and forth is like the precession of the mag-
netization derived in equation 1.23. But eventually the motion decays and the needle
stays aligned showing in the direction of the external field. The example is a little in-
appropriate, because the damping of the compass needles motion is purely mechanical
through the attachment to the rest of the compass device. Spin damping has different
causes, as will be discussed later on. However, the effect can in both cases be described
by adjusting equation 1.23. Recalling figure 1.2b) one can see that a further torque T D

is needed the direction of which needs to be perpendicular to M and to its temporal
change. So the torque providing the damping reads

T D =
α

γMs

[
M × dM

dt

]
. (1.25)

Here, the dimensionless prefactor α is of purely phenomenological nature and can be
determined from experiments. The torque is weaker for bigger saturation magnetiza-
tion Ms. Inserting this torque into the LANDAU-LIFSHITZ equation it adds up to the
LANDAU-LIFSHITZ-GILBERT (LLG) equation of motion

dM

dt
= −γ [M × H ] +

α

Ms

[
M × dM

dt

]
(1.26)

In equation 1.26 the dimensionless parameter α is called the GILBERT damping param-
eter.

Comparing equation 1.26 to the Landau-Lifshitz equation 1.23 one can deduce that
the effective (resulting) field which determines magnetization dynamics depends on
dM
dt

. This means that the magnetization motion causes another magnetic field, so
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that H is not the only magnetic field present, but can be imagined as an effective
(resulting) field, which reads

Hres = H − α

γMs

dM

dt
. (1.27)

Inserting Hres into equation 1.23 also provides the LANDAU-LIFSHITZ-GILBERT equa-
tion. Although one has to be careful with the expression "effective field" because, as
will be depicted in the next section, there are more mechanisms contributing to the
final effective field. That’s why the indication "resulting" field has been chosen in this
place.

1.3 Energies Affecting Ferromagnetic Order

The magnetization direction of a ferromagnet is not necessary dominated by the ap-
plied field. There are several other energies accounting for the resulting magnetization
direction. That means that a ferromagnetic samples magnetization might not point in
the direction of the applied field, but depends on the energy landscape in total. Every
energy is responsible for a magnetic field with a characteristic strength and direction.
On that account all fields add up to form an effective field

Heff = Hex + Hmagn−crys + Hshape + Hext. (1.28)

The fields are the following. First, this is the strongest, is the exchange field Hex

resulting from the exchange energy. This energy causes the spins to align parallel to
each other. Second there is Hmagn−crys the field resulting from the magneto-crystalline
anisotropy. This energy defines with Hshape the easy axis of a material. Finally, there is
Hext the applied magnetic field. Its interaction with the magnetization of the sample
is described by the Zeeman energy term.

1.3.1 Exchange Energy
The cause for the exchange interaction traces back to the Pauli-Principle. It states
for fermions that there cannot be two particles matching in all their quantum num-
bers. Therefore, two electrons with spins si and sj have always an energy difference.
This difference arising from the electron correlation is expressed by the Heisenberg-
Hamiltonian:

Hheis = −
N∑

i�=j

Jijsi · sj = −2
N∑

i<j

Jijsi · sj (1.29)

with Jij being the exchange integral of the two electrons represented by the spin op-
erators si and sj. Because of the symmetry of the exchange integral Jij = Jji the
Heisenberg-Hamiltonian can be simplified and multiplied by 2 as was done on the
right side of the equation. From the Heisenberg-Hamiltonian can be recognized that
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the energy is minimal with Jij > 0 for ferromagnetic coupling and with Jij < 0 for
anti ferromagnetic coupling. The exchange interaction is very short ranged because
the wave functions overlap only for the distance of two atoms. In consequence, in-
creasing the atom distance Jij decreases. This fact justifies the summation over the
nearest neighbors and neglecting the influence of further distanced electrons. With
this assumption Jij can be connected to the Weiss field by considering the energy of
an atomic moment [24]. By doing this, the spin alignment of a ferromagnet can be
described by its temperature dependence. Then

∑
j Jij = J0 for materials consisting

of identical atomic spins. In this case the exchange parameter J0 corresponds to

J0 =
3kBTC

2zs(s + 1)
(1.30)

where TC is the Curie-temperature, z the number of nearest neighbors and s the total
number of spins. At this point it is clear that, the higher TC for a specific material,
the stronger is also the coupling of the spins and the spins are more likely to align
parallel or anti parallel, respectively according to the behavior ferromagnetic or anti
ferromagnetic materials.

In order to calculate the exchange energy of the whole sample the sum of equation
1.29 needs to be replaced by an integral over the volume of the sample and the spins
have to be extended to a continuous magnetization. Then

Eex = A

∫
V

(∇m)2dV (1.31)

with A = 2Js2

a
as the material-specific exchange constant, a the lattice constant and

m = M
Ms

the magnetization normalized to the saturation magnetization of the ferro-
magnetic material. Finally the exchange field can be composed as the gradient of the
exchange energy density differentiated by the magnetization vector

Hex = �∇m(eex). (1.32)

The exchange energy is responsible for the long range ordering between atoms and is
needed to flip the spin of one atom aligned with the mean field of all other atoms in a
volume of a material.

1.3.2 Magnetic Anisotropy Energy
The previously mentioned exchange energy accounts in particular for the alignment of
spins in the same direction, but the definition of this direction is still missing. There-
fore, a closer look at the anisotropy of solids is indispensable. Experiments show that
there exists a specific direction along which the magnetization aligns easier than along
other directions. Therefore two axes are introduced. First the easy axis, along which
the magnetization in a sample prefers to align. Second the hard axis, the axis along
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which energy needs to be expended to align the magnetization along it, e.g. by ap-
plying an external field along this direction. In short, the magnetic anisotropy is the
energy needed to turn the magnetization of a ferromagnet from the easy to the hard
axis.

In the following, the magnetic anisotropies, which originate from the crystal struc-
ture and the shape of the samples are described. These anisotropy builders can only
be treated as polar vectors, thus no anisotropy direction exists, just a unique axis. This
unique axis is usually parallel to the sample normal for thin films. The angle θ is en-
closed by the saturation magnetization M s and the unique axis. The energy density
eani for the conversion of the magnetization can be developed into a series of even
powers of projection on the unique axis [24]

eani = K1 sin2 θ + K2 sin4 θ + K3 sin6 θ + ... (1.33)

Remarking that this depiction is only a series expansion with Ki (i = 1, 2, 3, ...) repre-
senting the anisotropy constants of dimension energy per volume, usually calculated
with the unit J/cm3.

The anisotropy field can be derived as

Hani =
2K1

Ms

cos θ, (1.34)

by neglecting the higher order terms [24]. For thin films the unique axis is usually
defined as the surface normal, enclosing the angle θ with the magnetization. For
magnetization along the sample surface it delivers θ = 90◦. This makes two cases
possible, first, when K1 > 0 the easy axis is along the surface normal also called out-
of-plain anisotropy and second when K1 < 0 the easy axis is parallel to the surface
itself, also called in-plane anisotropy.

There are two main contributions to the anisotropy in thin films. The first is the
magnetocrystaline anisotropy, arising from the atomic structure and the bonding in the
thin film, that means the spin orbit interaction. This anisotropy is represented by the
magnetocrystaline anisotropy constant Ku. The second is the shape anisotropy, arising
from the classical dipole interaction, as discussed below. This part of the anisotropy
is represented by the constant Ks. With these contributions the anisotropy constant is
given by K1 = Ku + Ks and the first order term of the anisotropy energy density reads

eani = (Ku + Ks) sin2 θ + ... (1.35)

Now whether a sample magnetizes in plane or out of plane is a question of the balance
between these two anisotropies. As is shown in [24] multilayers tend to posses a
large and positive Ku. This dominates the anisotropy and results in an out of plane
magnetization. For single layered thin films on the other hand K1 is usually smaller
than zero which results in an in plane magnetization.

The Magneto-Crystalline Anisotropy

The magneto-crystalline anisotropy arises as already mentioned from the spin-orbit
interaction [28]. This interaction couples the isotropic spin moment to an anisotropic
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lattice. In band structure calculations this is expressed by the largest difference of
the spin-orbit energy resulting from magnetizing the sample along the hard and the
easy direction. Nevertheless it is usually rather difficult to calculate Ku because of
the complexity of band structures and its dependence on the temperature, therefore
it is often treated as an empirical constant derived from experiments by measuring
magnetization curves or ferromagnetic resonance.

The Shape Anisotropy

As explained in [24] spins tend to align parallel due to the dominating exchange inter-
action. To minimize their energy even further two neighboring atomic moments align
parallel along the internuclear axis. For thin films, this axis is commonly oriented
along the surface, i.e. in-plane. The dominant energy density remaining here is the
shape anisotropy. This is the anisotropy arising from the classical dipole interaction.

In the following the derivation of the shape anisotropy will be introduced. Consider-
ing a magnetized disk without an external field, the magnetization inside and outside
of the disk can be expressed as

B = μ0H + M . (1.36)

Now two fields can be obtained, namely Hd = 1
μ0

(B − M) inside the disk and Hs =
1
μ0

B outside the disk. The field inside the disk is labeled demagnetization field and the
one outside is the stray field. Combining the Maxwell equation with Gauss’ theorem it
can be obtained that the conservation of law holds for the sum of H and M as follows

∇ · B = ∇ · [μ0H + M ] = 0. (1.37)

Hence sinks and sources of M act like positive and negative poles for the field H it
turns out

μ0∇ · H = −∇ · M . (1.38)

Here again the field H inside and outside the sample is defined as above with a demag-
netizing field and a stray field. The field outside the sample contains energy expressed
by

Ed =
μ0

2

∫∫∫
all space

H2dV = −1

2

∫∫∫
sample

HdMdV. (1.39)

Using Stoke’s theorem for Hd and Hs it shows up that they are equal. Further Hd

is almost 0 for in plane magnetization and goes up to Hd = −M
μ0

for out of plane
magnetization. However in general a demagnetizing factor N has to be stated, then
the demagnetization field is

Hd = −N

μ0

M . (1.40)

This factor is N = 0 for an in plane magnetized thin film and N = 1 for an out of plane
magnetized thin film. Finally, the shape anisotropy is given by

ED = Ks = − 1

2μ0

M2
s , (1.41)
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with Ms being the saturation magnetization. In the end this means, that the shape
anisotropy energy is limited to the specific saturation magnetization value for every
individual material.

1.3.3 Zeeman Energy
The last energy contribution to be discussed is the Zeeman Energy. This energy takes
into account the interaction between the magnetization and the externally applied
magnetic field. The energy term is given by

Ez = −μ0

∫
V

M · HextdV (1.42)

The importance of this energy lies in the excitation of the magnetization by the exter-
nal field. In the experiments described later, H will cause the rotation of the magne-
tization out of the easy axis and make precession possible. Conclusively the Zeeman
Energy works against the anisotropy energy. In the case that Hext is not along the easy
axis, it has to be stronger (higher Hext) in order to rotate the magnetization out of
the easy axis. The magnetization will be tilted from the easy axis, depending on the
strength and orientation of the applied field Hext.

1.4 Spin Waves

Experiments prove that the magnetization decreases at low temperatures, T � TC

in ferromagnets. This decrease cannot be explained by the Stoner excitation model,
because the spin-flip energies in this model are too big. Therefore, there has to be
another thermal excitation causing the decrease. In 1930 Felix Bloch suggested an
excitation model based on the so called SPIN WAVES or MAGNONS. To understand
the mechanism behind the spin waves, one has to begin with the Heisenberg model
(exchange energy). According to this model, all spins should align parallel at low
temperatures and when the maximum saturation magnetization is reached. However,
the energy arising from two spins in the crystal, oriented under the angle ε to each
other, and at the distance a, is given by

ΔE = 2Js2[1 − cos ε] ≈ Js2ε2. (1.43)

From this equation follows, that there can be a lot of small excitation energies, which
vanish with ε2. Therefore, looking at a chain of N spins with every spin rotated by an
angle ε to the next spin, the energy difference

ΔE = NJs2ε2 (1.44)

arises. Relative to the macro spin, where all spins precess in phase, the energy ex-
pressed in equation 1.44 describes the system in which spins precess with a constant
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phase difference ε. The magnon wavelength can be defined as the number of spins it
takes to acquire a 360◦ rotation. Because of this spin waves or magnons can be defined
as the amount of spins precessing coherently around the magnetization M .

Going further, the model, which, so far, has been a classical one, must be combined
with quantum mechanics [24] and the energy difference becomes

ΔE = �ω = Ja2k2 = Dk2 (1.45)

with k = 2π/λ being the wave vector of the spin wave, a the lattice constant and D
the spin wave stiffness. With decreasing k or increasing λ, the energy of the spin wave
also decreases. For the k = 0 mode, also called the the Kittel mode, the spins precess
in phase and therefore can be treated as a single macro spin. This is also the case in
the experiments presented below. Because the ferromagnetic layers of the examined
samples are thin (1 − 20 nm) compared to the penetration depth, all spins throughout
the thickness of the samples are excited and precess in phase.

In the end it can be summed up that spin waves or magnons have a particle character
with an energy �ω, a linear momentum �k and an even angular momentum ± �. For
the latter property magnons are classified as bosons and obey Bose-Einstein statistics.

1.5 The Angular Precession Frequency ω(H)

As mentioned before the experiments carried out within this diploma thesis deal with
magnetization dynamics, which is based on the precession of spins. The recorded data
allow the determination of spin precession frequency, which can be observed exper-
imentally and, because of this, plays an important role in the analysis of the experi-
ments. In this section the relation between the precession frequency and the energies
involved, the dispersion relation for the Kittel mode, will be derived in similarity to
[7].

It is a lot easier to to derive the dispersion relation considering the precession with-
out damping. We will start by writing the LANDAU-LIFSHITZ equation 1.23 in polar
coordinates. In particular this means, that the components M and Heff in polar
coordinates need to be found.

With a choice of coordinates according to figure 1.3, the magnetization vector M
reads

M = Ms

⎛⎝ sin θ cos ϕ
sin θ sin ϕ

cos θ

⎞⎠ , (1.46)

and its infinitesimal change is

dM = Msdrer + Msdθeθ + Ms sin θdϕeϕ. (1.47)

Where Ms is the saturation magnetization, the angles θ and ϕ represent the new polar
coordinates of M in reference to the cartesian system of coordinates. The effective
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Figure 1.3: Polar system of coordinates

magnetic field can be obtained by the partial differentiation of the free magnetic en-
ergy F by the normalized magnetization m = M/Ms which reads

Heff = − 1

μ0Ms

∂F

∂m
. (1.48)

Changing to polar coordinates yields

Heff = − 1

μ0

(
∂F

∂r
er +

1

Ms

∂F

∂θ
eθ +

1

Ms sin θ

∂F

∂ϕ
eϕ

)
. (1.49)

With the help of these last three relations, the left hand side of equation 1.23 becomes

dM

dt
= Ms

dθ

dt
eθ + Ms sin θ

dϕ

dt
eϕ. (1.50)

The first term vanishes because the total value of the magnetization is constant, only
the direction changes. The right hand side requires some more manipulation, but
finally yields to

M × Heff = Ms
1

μ0 sin θ

∂F

∂ϕ
eθ − 1

μ0

∂F

∂θ
eϕ. (1.51)

Finally the outcome is the LANDAU-LIFSHITZ equation 1.23 in polar coordinates

dθ

dt
= − γ

μ0Ms sin θ

∂F

∂ϕ
(1.52)

dϕ

dt
=

γ

μ0Ms sin θ

∂F

∂θ
. (1.53)
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Next these expressions need to be simplified by expanding the free energy in a Taylor
series up to the second order. Also note that the first order Taylor terms vanish, because
the free energy is expanded for small ϕ and θ around the equilibrium position ϕ0 and
θ0, which is a minimum of F . The Taylor expansion reads then

F = F0 +
1

2

[
∂2F

∂θ2
θ2 +

∂2F

∂θ∂ϕ
θϕ +

∂2F

∂ϕ2
ϕ2

]
. (1.54)

Inserting this approximation into the LANDAU-LIFSHITZ equation in polar coordinates
leads to

dθ

dt
= − γ

μ0Ms sin θ

(
∂2F

∂ϕ2
ϕ +

∂2F

∂θ∂ϕ
θ

)
(1.55)

dϕ

dt
=

γ

μ0Ms sin θ

(
∂2F

∂θ2
θ +

∂2F

∂θ∂ϕ
ϕ

)
. (1.56)

Now by choosing

θ = θ0 + Aθ exp(−iωt) (1.57)
ϕ = ϕ0 + Aϕ exp(−iωt), (1.58)

as the ansatz for small oscillations around the equilibrium for both angles, where Aθ

and Aϕ compose the precession amplitude vector, the equation of motion is formed to

(
γ

μ0Ms sin θ

∂2F

∂θ∂ϕ
− iω

)
θ +

γ

μ0Ms sin θ

∂2F

∂ϕ2
ϕ = 0 (1.59)

γ

μ0Ms sin θ

∂2F

∂θ2
θ +

(
γ

μ0Ms sin θ

∂2F

∂θ∂ϕ
− iω

)
ϕ = 0. (1.60)

This final set of homogeneous equations of motion 1.59 can only be solved non-
trivially, when the following expression holds for the precession frequency

ω =
γ

μ0Ms sin θ

√
∂2F

∂θ2
· ∂2F

∂ϕ2
−
(

∂2F

∂θ∂ϕ

)2

. (1.61)

The precession frequency depends on the magnetic energies and their effective direc-
tion, given by the deviation angles θ and ϕ form equilibrium.

This result having been derived, the next section deals with the question how the
free energy F and the precession frequency ω behave in the examined samples with
respect to the sample geometry and the experimental setup.

1.5.1 Kittel Equation for the Experimental Geometry
In the experiments carried out during this thesis, the samples are exposed to a sta-
tionary external magnetic field. Initially, a pump laser pulse demagnetizes the sample
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and and causes the magnetization precession in the GHz regime back to its equilib-
rium position. This frequency is defined by Heff . In the macro spin approximation
the effective field is composed from the external field Hex, the magneto-crystalline
anisotropy field Hmagn−crys and the shape anisotropy field Hshape. The free energy F
expressed in polar coordinates is considered with regard to the magnetization vector
M in equilibrium and takes the form

F = − μ0Ms(Hx sin θ cos ϕ + Hy sin θ sin ϕ + Hz cos θ)

− Kx sin2 θ cos2 ϕ − Ky sin2 θ sin2 ϕ − Kz cos2 θ

+
μ0

2
M2

s cos2 θ

(1.62)

In order to calculate the derivatives needed for equation 1.61 from the free energy
given by equation 1.62, some characteristics concerning the experimental setup have
to be made. Firstly, the given angles are for small derivations out of the equilibrium po-
sition. Secondly, the external applied field can be rotated by θ from 0◦−90◦, that means
from the x-axis to the z-axis with a permanent angle ϕ = 0◦. Due to technical limita-
tions, as will be explained later, the setup allows external fields of μ0Hx ≤ 150 mT for
angles θ = 55◦ − 90◦, that means 0◦ − 35◦ out-of-plane in respect to the sample surface
and μ0Hz ≤ 70 mT for angles θ = 0◦ − 35◦, which means 55◦ − 90◦ out of plane in re-
spect to the sample surface. Thirdly, the easy axis is governed by the demagnetization
field and lies in-plane for the small thickness of the samples. Fourthly, the Zeeman
energy rotates the magnetization by an angle of at most 7◦ out of plane [7]. Fifthly,
because no significant in plane anisotropies were observed, the magnetization aligns
with the Hx, where it should be stated that Hext = (Hx, Hy, Hz).

With these characteristics, the angle ϕ = 0 and the external field component Hy = 0,
the derivatives of the free energy are

∂2F

∂θ2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ϕ=0 = (−2Kx + 2Kz − μ0M

2
s ) cos 2θ + μ0Ms(Hx sin θ + Hz cos θ),

∂2F

∂ϕ2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ϕ=0 = (2Kx − 2Ky) sin2 θ + μ0MsHx sin θ, and

∂2F

∂θ∂ϕ

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ϕ=0
Hy=0

= 0.

This indicates that the precession takes place around the equilibrium direction tilted
by the angle θ out-of-plane and ω is

ω =
γ

μ0Ms sin θ

√
μ0Ms(Hx sin θ + Hz cos θ) + (−2Kx + 2Kz − μ0M2

s ) cos 2θ

·
√

μ0MsHx sin θ + (2Kx − 2Ky) sin2 θ.

(1.63)

At this point, the formula can be simplified further. Due to the small rotation, one can
assume that θ ≈ π

2
. No precession without an external field leaves Kx ≈ Ky and no



26 1.6 Gilbert Damping in Experiments

significant in-plane anisotropy yields Kz 	 Kx. Therefore,

ω =
γ

μ0

√
μ0Hx

(
μ0Hx + μ0Ms − 2Kz

Ms

)
. (1.64)

The saturation magnetization for the examined materials, namely nickel and permal-
loy, is μ0Ms(Ni) = 0.659 T and μ0Ms(Py) = 0.8 T.

This final expression 1.64 is called the Kittel formula. It describes the frequency
dispersion relation of the Kittel precession mode with k = 0. The precession frequency
is measured by applying different external field strengths systematically. Then the
Kittel formula can be fitted to the experimentally determined values of ω over the
different external fields and that way it can be used to determine the out-of-plane
anisotropy constant Kz

[
J

m3

]
. As it will be presented later, the knowledge of the out-

of-plane anisotropy constant is essential to determine the Gilbert damping parameter.

1.6 Gilbert Damping in Experiments

In this final section dealing with the theory on magnetization dynamics, the Gilbert
damping parameter α will be derived. This is the proffered parameter used to compare
the precession damping from different experimental techniques and specifications. In
time resolved experiments, the damping is observed in a form of the exponential decay
time τα of the precession amplitude. The Gilbert damping parameter α is related to τα

for the Kittel k = 0 mode. In order to derive this relation, we have to go back to the
LANDAU-LIFSHITZ-GILBERT equation 1.26:

dM

dt
= −γM × Heff +

α

Ms

M × dM

dt
.

This equation needs to be linearized for the three components Mx, My, Mz of the mag-
netization, in order to extract the relevant parts.⎛⎝dMx

dt
dMy

dt
dMz

dt

⎞⎠ = −γ

⎛⎝MyHeff,z − MzHeff,y

MzHeff,x − MxHeff,z

MxHeff,y − MyHeff,x

⎞⎠+
α

Ms

⎛⎝My
dMz

dt
− Mz

dMy

dt

Mz
dMx

dt
− Mx

dMz

dt

Mx
dMy

dt
− My

dMx

dt

⎞⎠ (1.65)

The next step is to take a closer look at the relevant magnetization components which
contribute to the precession. There are some properties the examined samples posses.
Firstly, we are dealing with thin films therefore the magnetization takes mainly place
in-plane which means Mz �

√
M2

x + M2
y . Also the external field Hex is applied in the

xz-plane, therefore M is aligned with the x-direction and the precession proceeds in
the yz-plane. This means My, Mz � Mx ≈ 1. With these considerations the set of
three coupled equations simplifies to two coupled equations

Ṁy = −γ(MzHeff,x − MxHeff,z) − αṀz

Ṁz = −γ(MxHeff,y − MyHeff,x) − αṀy.
(1.66)
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For further calculations with this set of equations, explicit knowledge of the effective
field Heff is required. In the case of the examined samples, again, the expressions
obtained for the free energy consists of the Zeeman energy, also including the shape
anisotropy and the magneto crystalline anisotropy with its anisotropy parameters for
all directions Kx, Ky, Kz generally present. For simplification the normalized magne-
tization vector

m =
M

Ms

=

⎛⎝mx

my

mz

⎞⎠ =

⎛⎝ sin θ cos ϕ
sin θ sin ϕ

cos θ

⎞⎠ (1.67)

in polar coordinates is introduced. With this, the free energy, unchanged from section
1.5.1, reads

F = − Kxm
2
x − Kym

2
y − Kzm

2
z

− μ0Ms(Hxmx + Hymy + Hzmz)

+
1

2
μ0M

2
s m2

z.

(1.68)

From here on, the effective magnetic field is given by the derivative of the free energy
derived above. The normalized magnetization vector then becomes

Heff = − 1

μ0Ms

∂F

∂m

=

⎛⎜⎝Hx + 2Kx

μ0Ms
mx

Hy + 2Ky

μ0Ms
my

Hz +
(

2Kz

μ0Ms
− Ms

)
mz

⎞⎟⎠ .

(1.69)

Now, the components of the effective field can be inserted into the set of coupled
equations 1.66, yielding in

Ṁy = −γMsHz − γ

(
Hx +

2Kx

μ0Ms

− 2Kz

μ0Ms

+ Ms

)
Mz − αṀz, and

Ṁz = γ

(
Hx − 2Ky

μ0Ms

+
2Kx

μ0Ms

)
My − αṀy.

(1.70)

One method of solving this set of equations is by derivation in time as the time deriva-
tives of higher order can be used to replace components in the equations. It is thus
possible to uncouple the equations and make them dependent on only one component
in a single direction. The time derivatives of equations 1.70 are

M̈y = −γ

(
Hx +

2Kx

μ0Ms

− 2Kz

μ0Ms

+ Ms

)
Ṁz − αM̈z, and

M̈z = γ

(
Hx − 2Ky

μ0Ms

+
2Kx

μ0Ms

)
Ṁy − αM̈y.

(1.71)
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The magnetization vector precesses around the x-axis, describing a circle in the zy-
plane. This means, both My(t) and Mz(t) differ in phase, and as will be seen later in the
experiment only the projection on the y-axis of the magnetization is observed. Thus
decoupling the expression 1.71 leads to one equation of motion which only depends
on My and its time derivatives, but not on Mz.

(1 + α2)M̈y + αγ

(
2Hx +

4Kx

μ0Ms

− 2Ky

μ0Ms

2Kz

μ0Ms

+ Ms

)
Ṁy+

+ γ2

(
Hx +

2Kx

μ0Ms

− 2Kz

μ0Ms

+ Ms

)(
Hx +

2Kx

μ0Ms

− 2Kz

μ0Ms

)
My = 0.

(1.72)

It looks almost like the equation of motion for a damped harmonic oscillator. There-
fore, the usual ansatz can be applied

My = AMy exp(−iωt)e−t/τα . (1.73)

In this case AMy is the precession amplitude, ω is the precession frequency and τα

again the characteristic exponential decay time. In order to see a real oscillation the
imaginary part of the solution needs to be zero. With the time derivatives of the ansatz

Ṁy(t) = (−iω − 1

τα

)AMy exp(−iωt)e−t/τα (1.74)

M̈y(t) = (
1

τ 2
α

− ω2 + 2iω
1

τα

)AMy exp(−iωt)e−t/τα (1.75)

one obtains for the imaginary part of the equation of motion

(α2 + 1)
2iω

τα
− iωαγ

⎛⎜⎜⎝2Hx +
4Kx

μ0Ms

− 2Ky

μ0Ms

− 2Kz

μ0Ms

+ Ms︸ ︷︷ ︸
=H′

⎞⎟⎟⎠ = 0 (1.76)

Where H ′ is constant for a given external field. This quadratic equation for α can be
solved as usual and provides

α =
1

2

⎛⎝ταγH ′

2
±
√(

ταγH ′

2

)2

− 4

⎞⎠ . (1.77)

From these two solutions, one can be excluded by physical considerations:
The amount of ταγH ′ is 	 1 for the experimental setup. This would lead to over-
damping α 	 1 for the solution with the "+" in front of the square root. However,
this is contrary to the observations, there are several oscillations observed, before the
precession decays and fades out, as will be seen later. Therefore, the solution carrying
the "−" sign is the physically relevant solution.
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It can be simplified by expanding the square root by Taylor for small x with
√

1 − x ≈
1 − 1

2
x + o(x2). Finally, the damping parameter can be determined from

α =
1

ταγ
(
Hx + 2Kx

μ0Ms
− Ky

μ0Ms
− Kz

μ0Ms
+ Ms

2

) . (1.78)

As mentioned before, the examined samples do not show any in-plane anisotropy,
which justifies the negligence of the constants Kx and Ky. The remaining expression
can then be simplified to

α =
1

ταγ
(
Hx − Kz

μ0Ms
+ Ms

2

) . (1.79)

Obviously, the anisotropy constant Kz is necessary in order to determine the damping
parameter α. Because of this, it is necessary to apply equation 1.64 and fit the pre-
cession frequencies, to find out the value of Kz. Therefore, the frequency spectra for
several external magnetic fields for a constant thickness and material selection have
to be made. For high external fields, the anisotropy contribution becomes smaller and
finally stops playing a role, which simplifies equation 1.79 to

α =
1

ταω
. (1.80)

Both of these parameters, ω and τα can be obtained by fitting the measured spectra by
a suitable function introduced later. So that 1.80 can be used for a rough estimation
of α.
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2 The Experiments

2.1 Experimental Environment

Let us have a closer look at the experimental arrangement and its components. The
experiments require stable laser pulses in time.

First a few words should describe the experimental environment shortly. The lab
room is air-conditioned and held at a constant temperature, set to 21◦C with fluctua-
tions less than ± 1◦C through the year. The experimental equipment and the experi-
ment itself are situated on an air damped table of high mass to minimize oscillations
of the table to about 1 Hz comparable to the oscillations of the building. Above the
experimental table a filtered and temperature stabilized air duct delivers air through
equally spaced holes equidistantly spread throughout the whole table area. This en-
sures that the area of the table is free of dust. Furthermore, the experimental table
is separated from the lab room by rubber lamellae hanging from the fan of the table
edge, thus creating a laminar air flow in the experimental area is created. This re-
duces turbulences and possible dust particles in the experimental area and, also the
disturbance of the laser beam is minimized.

2.2 The fs Laser Equipment

The laser system is assembled out of five components as depicted in figure 2.1. It con-
sists of the pump laser (Verdi 18), the Ti:Sapphire oscillator and the amplifier (RegA
+ Expander, Compressor). Before the required laser pulses arrive at the experiment,
the creation of the fs-laser pulses begins with the self built Ti:Sapphire laser oscillator
[11, 14]. The Ti:Sapphire crystal is pumped with ca. 5.2 W, at 532 nm. The cavity is
built in z-configuration. Two prisms are used for dispersion compensation. Using kerr
mode locking allows to generate ∼ 60 fs pulses with a repetition rate of 80 MHz and
a power of about 500 mW=̂2 μJ/pulse. The wavelength spectra width of the coupled
generated pulses is ∼ 700 nm − 845 nm.

From here the beam is coupled into an expander where the pulses are stretched
in time to be coupled to the regenerative amplifier, RegA 9050 (Coherent). Both the
Ti:Sapphire and the RegA are optically pumped by a commercial Verdi V18, solid state
(Nd : YVO4), frequency doubled (532 nm), continuous wave laser. The RegA with
about 11.3 W and the Ti:Sapphire crystal with about 5.2 W. In the RegA the pulses are
amplified to about 4.5 μJ per pulse and proceed to the Compressor. Here, the pulses
are again compressed to a pulse duration of about 60 − 80 fs and loose a little of their
energy to ∼ 4 μJ.

31
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Before arriving at the experiment the laser beam carrying the pulses passes an ar-
rangement consisting of a λ/2 plate and a polarizer; this allows to adjust the pulse
energy proceeding to the experiment in the range from zero up to about 2.5 μJ per
pulse. As it can be seen in figure 2.1 there are four components. The expander and
compressor are situated in the same box.

Figure 2.1: Pump laser, master oscillator, amplifier system and the expander/compres-
sor box.

2.3 The Experimental Time-resolved MOKE Setup

The time resolved magneto-optical Kerr effect (TRMOKE) experiment is set up as schemat-
ically shown in figure 2.2. First, the beam is split into two beams, in a way that one still
has about 95 % of the energy and is called the pump beam. The other, much weaker
beam holding about 5 % of the original energy will be referred to as the probe beam.

From here on, the pump beam goes through a mechanical chopper and passes a
delay stage. This is a mirror system positioned on a guide rail. By changing the
mirror position on the delay stage, the path length for the pulses of the pump beam
to the sample can be varied. This way the arrival of the pump pulses in relation to
the probe pulses can be varied by the delay time Δτ . After passing the delay stage
the pump beam is directed straightly to the sample and focused to reach it with a spot
size of ∼ 60 μm. It arrives at the sample nearly perpendicular to the surface. A small
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deviation from perpendicularity is necessary, so that the beam is not reflected back
into the beam positioning optics.

The probe beam passes through a polarizer first, followed by a λ/4-plate, before
the beam proceeds to the photo elastic modulator. Finally, the probe beam has to be
directed to arrive at the sample surface in an angle of 25◦ to the surface normal and a
spot size of 30μm. The reflected beam in the end passes an analyzer, and its intensity
is detected by a photo diode and the magneto-optical Kerr rotation θk can thus be
detected. It is proportional to the magnetization M .

Figure 2.2: Scheme of the experimental setup for the TRMOKE experiments.

Knowing the optical path, the question arises which measurements are possible.
Considering a sample, located in an external field generated by an electromagnet

as presented in [7], there are two possibilities to carry out measurements with this
arrangement: The simple one is static MOKE. This means recording the Kerr rotation
of the sample in respect to the applied field. Using ferromagnetic materials in the
experiment yields in a hysteresis. Not all components available at the setup shown in
figure 2.2 are needed. Only the first Lock-In amplifier is used to detect the polarization
angle θK of the reflected beam, as will be discussed later. The pump beam is not
absolutely necessary for this kind of experiment, but can be used to determine the
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hysteresis before and after electron excitation by the pump pulse at a specific delay
time, so that the demagnetization rate can be determined.

Apart from this first possibility, also a time resolved kind of measurement is possi-
ble. These TRMOKE (Time Resolved Magneto-Optic Kerr effect) experiments, as the
name suggests can be used to trace the change of magnetization. Here, the second
Lock-In amplifier is used to record the change in the polarization in a specific time
interval ΔθK . In our experiments, the change in magnetization has been observed,
after demagnetizing the sample by the pump beam.

2.4 Magneto-Optical Kerr Effect

The change in polarization θk of the light reflected form a sample is proportional to
its magnetization M . A closer look is needed how both changes, in polarization and
magnetization, are connected. First, we will take a look at the possible geometries
to measure MOKE. There are three configurations as illustrated in figure 2.3. In the

Figure 2.3: Possible MOKE geometries

polar Kerr geometry the magnetization is perpendicular to the sample surface and
parallel to the optical plane, the plane formed by the incoming and reflected beam.
In the longitudinal Kerr geometry, on the other hand, the magnetization is parallel
to both, the sample surface as well as the optical plane. Finally, in the transversal
Kerr geometry, the magnetization is parallel to the sample surface, but perpendicular
to the optical plane. As described, the applied field H points in the same direction
as the magnetization for every geometry. For one direction of the external field the
magnetization aligns with the effective field which changes with the strength of the
external field, and can be measured as follows.

In the polar geometry, the magnetization change is proportional to the z-component
of the Kerr rotation and ellipticity respectively, whereas in the longitudinal geometry
the change is proportional to the y-component of the Kerr rotation and ellipticity re-
spectively. The transversal geometry eventually results in a change in reflectivity. In
real experiments, the orientation of the external field Hext is given by the available
electro-magnet. Also, due to the high demagnetization fields, the magnetization is not
aligned with Hext. Therefore, the measurement signal is a mixture of polar, longitu-
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dinal and eventually transversal Kerr effect. These will be addressed in detail in the
following section.

2.4.1 Phenomenological Description
For the beginning we will examine the phenomenological description of the Kerr-effect
before looking at the microscopic origin. Phenomenologically, we assume that direct
interaction of the magnetic field H with the magnetization can be neglected for optical
frequencies. Therefore, the interaction of the electric field vector E of the light with
matter can be fully described by the electric polarization vector P . For small electric
fields the polarization or the dielectric displacement D depends linearly on the electric
field E of the incoming light:

P = χE

D = εE

ε = 1 + 4πχ,

where χ stands for the electric susceptibility and ε represents the dielectric function.
ε is a symmetric tensor for paramagnets and an antisymmetric tensor for ferromagnets
with, the Onsager relation holding for its components:

εij( − M) = εji(M).

The dielectric tensor in the case of non vanishing magnetization can be generally writ-
ten with the help of Euler’s angles as

ε = εxx

⎛⎝ 1 − iQmz iQmy

iQmz 1 − iQmx

− iQmy iQmx 1

⎞⎠ , (2.1)

with (mx, my, mz) = M/Ms and Q = iεxy/εxx being the magneto-optical constant. For
simplicity εzz = εyy = εxx. As was done in [29], the magneto-optical Fresnel reflection
matrix can be derived by solving the Maxwell equations for the above ε; it is

R =

(
rpp rps

rsp rss

)
(2.2)

with the definitions

θp
K =

rsp

rpp

(2.3)

θs
K =

rps

rss

(2.4)

for the complex Kerr rotation for p-polarized and s-polarized light.
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Figure 2.4: Optical path through a thin film medium 1 of thickness d1 and arbitrary
magnetization direction. Taken from [29].

Simplified formulations for both MOKES (polar, longitudinal) are derived in the limit
for ultra thin magnetic films. As shown in figure 2.4 the incoming light wave pene-
trates through a thin film into the substrate. With this approach double reflections
have to be introduced into the calculations. In figure 2.4 the scheme of an incom-
ing light wave with the electric vector E0 and angle θ0 to the surface normal from a
medium 0 with a refraction index n0 into a magnetic medium 1 with a refraction index
n1 and thickness d1 is shown. The light wave is partly reflected and partly propagates
through medium 1 (here indicated with the wave vector E1) into medium 2, with
another refraction angle θ2 and is again partly reflected and partly propagating into
medium 2. This is the case if when a thin film is deposited on a much thicker substrate,
medium 2. With these assumptions the following simplified relations for the complex
Kerr angle are valid:

Firstly, for the polar configuration, we can assume that mz = 1 and mx = my = 0.
Then the Kerr rotation for p-polarized and s-polarized light are

(θp
K)pol. =

cos θ0

cos(θ0 + θ2)
cos θ2Θn (2.5)

(θs
K)pol. =

− cos θ0

cos(θ0 − θ2)
cos θ2Θn (2.6)

with Θn being the complex polar Kerr effect for normal incidence in the limit for ultra
thin films given by

Θn =
4πn0n

2
1Qd1

λ(n2
2 − n2

0)
. (2.7)

Secondly, for the longitudinal configuration, the field components are given by my =
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1 and mx = mz = 0. Which yields

(θp
K)long. =

cos θ0

cos(θ0 + θ2)

sin2 θ1

sin θ2

Θn (2.8)

(θs
K)long. =

cos θ0

cos(θ0 − θ2)

sin2 θ1

sin θ2

Θn (2.9)

Thirdly, the equations for both configurations can be combined in order to obtain
the general, geometry independent relations

θp
K =

cos θ0

cos(θ0 + θ2)

(
my

sin2 θ1

sin θ2

+ mz cos θ2

)
Θn (2.10)

θs
K =

cos θ0

cos(θ0 − θ2)

(
my

sin2 θ1

sin θ2

− mz cos θ2

)
Θn. (2.11)

One should note that these simplified analytic formulas have proven to be consistent
with experiments carried out on thin films [29].

2.4.2 Microscopic Model
After these phenomenological considerations, a quantum mechanical model for the
cause of the rotation will be derived. The complex Kerr rotation angle for a thin film
of thickness D is given, if D � λ, by

θK =
iσxy

σs
xx

4πD

λ
, (2.12)

where σxy is the complex off-diagonal component of the conductivity tensor, σs
xx is

the optical conductivity of the substrate and λ = 2πc/ω is the wavelength of light in
vacuum. According to equation 2.12 a Kerr rotation exists, if the off diagonal matrix
elements do not vanish. So let us have a look at the conductivity tensor as has been
done in [3]. In terms of microscopic electronic structure the conductivity tensor can
be obtained from Fermi’s golden rule. Considering optical transitions from an initial
state |i > to the final unoccupied state |f > the off-diagonal imaginary component σ

′′
xy

of the conductivity tensor is

σ
′′
xy =

πe2

4�ωm2Ω

∑
i,f

f(εi) [1 − f(εf )] ×
[| < i|p−|f > |2 − | < i|p+|f > |2] δ(ωfi − ω),

(2.13)
with p± ≡ px ± py, f(ε) is the Fermi-Dirac function, Ω the total volume and �ωf,i ≡
εf − εi is the energy difference between the states. The factor δ(ωfi − ω) ensures the
energy conservation condition and the matrix elements < i|p−|f > and < i|p+|f >
express the dipolar transitions for left and right polarized light. Thus, σ

′′
xy depends
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Figure 2.5: Transitions from d to p levels in transition metals (left) and the correspond-
ing absorption spectra for photon energies hν (right). Taken from [3].

linearly on the absorption difference for both polarization directions. With the given
selection rules for electronic dipolar transitions

Δl = ±1

Δml = ±1,

in transition metals only transitions between d and p levels are allowed. Further, the
second rule confines the transitions to correspond to left (Δml = +1) or right (Δml =
−1) polarized light. As illustrated in figure 2.5 in transition metals the transition takes
place from the dxz,yz levels with l = 2 and ml = ±1 to pz levels with l = 1 and ml = 0.
The exchange energy Δex causes a partition between the spin up and spin down levels.
Spin-orbit coupling Δso splits the levels into d(x+iy)z with ml = +1 and d(x−iy)z with
ml = −1. Both sorts of spins are split differently. While for spin up, ml = +1 is the
higher energy level, the reverse is valid for spin down. This shows that in a transition
ferromagnet the Kerr rotation is caused by the simultaneous appearance of exchange
splitting and spin-orbit splitting.

2.5 The Measurement Technique

For a better understanding of the carried out experiments a short introduction into
the applied measurement technique is necessary. First, the detection of the Kerr effect
by employing a Photo-Elastic Modulator (PEM), and second, the expansion to time
resolved measurements applying the double-modulation technique is presented. The
used experimental setup is identical with the one used in [7], and here the techniques
will be just outlined shortly.
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2.5.1 Detection of the Kerr Rotation
In our experimental setup the Kerr effect is detected making use of a polarisation mod-
ulation technique, by use of an active optical element, the PEM. As depicted in figure
2.2 linearly polarized light passes through a λ/4-plate, then the resulting circularly
right polarized light is modulated by the PEM. The modulation is represented by the
Jones matrix:

MPEM =

(
eiA sin ωt 0

0 1

)
,

where ω/2π = 50 kHz = ν1 is the modulation frequency of the PEM, which is passed
on to the Lock-in and A = π/2 is the maximum phase shift. The sample is located in
an external magnetic field of an electro magnet as described previously. The reflected
light passes through an analyzer to be detected by a photo diode. The measured signal
I consists of a DC and an AC part. The Kerr angle θK is then measured through an
intensity change I by the Lock-In amplifier as follows

IDC =
R

2

Iν1 = J1

(π

2

)
R (αA − θK)

I2ν1 = −2J2

(π

2

)
R εK .

The DC signal IDC gives the reflectivity R. Locking the signal Iν1 at the modulation
frequency ν1 gives a change in the Kerr angle in respect to the analyzer angle αA.
Locking the signal I2ν1 at the double modulation frequency 2ν1, the ellipticity εK is
detected.

2.5.2 The Time Resolved Kerr Effect
In order to extract the timed resolved Kerr effect from the measurement a double
modulation technique is needed. Whereas the Kerr rotation is extracted with the
probe beam in the same way as in the previous section. To obtain the change in
the Kerr rotation ΔθK the pump beam intensity is modulated by a mechanic chop-
per at a frequency of ν2 = 800 Hz, as depicted in figure 2.2. The signal obtained
by the first Lock-In L1 is passed to a second Lock-In L2 locking the signal at the fre-
quency ν2. The time constants (τ(L1) = 10 μs, τ(L2) = 300 ms) and the sensitivities
(Vmax(L1) = 20 mV, Vmax(L2) = 100 mV) of the Lock-In’s are set to gain the maximum
magnetic signal.

2.6 The Thermal Effect of the Pump Pulse

There is still one thing missing for a complete experiment description: The answer to
this question is, what happens inside of the sample, after a pump pulse has arrived
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and how this influences the magnetization within the sample on the ps time scale.
Before the pump pulse arrives, the electrons of the sample are at the temperature

Figure 2.6: Demagnetization by increase of temperature.

T distributed according to the Fermi-Dirac statistics. The energy deposited by the
laser pulse causes a population inversion of the electrons above the Fermi level by
optical transitions. The electrons thermalize through electron-electron scattering to
a Fermi-Dirac distribution at a higher temperature T + ΔT . After this the energy is
transferred to the lattice (electron-phonon scattering) and to the spin system (electron-
spin scattering). The spin scattering leads to a rise in temperature of the spin system
and so the loss of ferromagnetic order as can be concluded from figure 2.6 (Curie-
Weiss-Law).

The time evolution of this scattering process is described by the three tempera-
ture model [13]. The temperatures Te, Tp, Ts are coupled by the coupling constants
gep, ges, gsp where the subscripts are e for electron, p for phonon and s for spin. With
the heat capacities Ce, Cp, Cs the dependencies of the three temperature model are

Ce(Te)
dTe

dt
= −gep(Te − Tp) − ges(Te − Ts) + P (t)

Cs(Ts)
dTs

dt
= −ges(Ts − Te) − gsp(Ts − Tp)

Cp(Tp)
dTp

dt
= −gep(Tp − Te) − gsp(Ts − Tp).

where P (t) represents the laser field pulse energy.

2.6.1 Laser-Induced Magnetization Dynamics
Apart from the demagnetization, the excitation of the spin system has another effect
triggering the precession of the spins. This effect is most clearly explained with the
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help of figure 2.7. First, before the pump pulse arrives, the system is in equilibrium, i.e.
the magnetization is aligned with the effective field Heff . The occurrence at the point
in time when the pump pulse arrives is considered as the excitation by the pulse. The
energy deposited by the pump pulse increases the temperature of the sample within
the laser spot. The anisotropy changes due to the temperature increase, which leads
to a change in the effective field. This process takes place on a timescale smaller than
1 ps. After the anisotropy has changed, the effective field the magnetization M begins
to align with Heff starting to precess around it. Meanwhile, the sample cools down
to the equilibrium temperature and the anisotropy returns to its original value with
the effect that M is out of equilibrium at this time ( < 10 ps after excitation). The
change in anisotropy field pulse resulting from the change in temperatures triggers
the precession. This can be implemented into the LLG 1.26 as follows:

Ṁ = −γM × (Heff + Hpulse(t)) +
α

Ms

M × Ṁ . (2.14)

Figure 2.7: Laser-Induced magnetization dynamics within the first ns.

Finally, the magnetization has to align with the effective field which is back in the
equilibrium position again. This alignment process is a precession of the magnetiza-
tion in the effective field. The process starts around 30 ps after the excitation and takes
place on a timescale up to a few ns. In order to describe the precession of the mag-
netization aligning back with the effective field in equilibrium again the LLG equation
without the anisotropy field pulse is used.

Additionally, in the case of samples thinner than the laser pulse penetration depth
all spins are excited and precess in phase. In this case, the macro spin approximation
is valid for the analysis and only the Kittel k = 0 mode is present. This justifies an
analysis using a damped sine-like precession. For this case, the analysis of the data
is easier than for the occurrence of several precession modes, because the precession
frequency and declination time can be obtained by fitting the function introduced in
the next chapter. The latter case requires the application of fourier transforms in order
to extract the involved precession frequencies.
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3 Sample Preparation and Positioning
Two kinds of ferromagnetic materials, namely nickel and permalloy (Ni80Fe20), are
subject to this thesis, the former of which were self-prepared by vapor deposition in
the UHV-laboratory. The latter were prepared by Mathias Kläui using MBE.

3.1 UHV Vapor Deposition

The UHV chamber can reach base pressures of p < 5 · 10−10 mbar; it was built at the
University of Göttingen (for a detailed description see [8]). The deposition process
takes place as follows. The deposited materials are heated by an electron beam coming
from an e-gun in order to be evaporated and deposited on a Si 100 substrate. The
thickness is controlled with an oscillating crystal, obtaining an accuracy < 1 Å. This
accuracy is achieved by the positioning of the oscillating crystal. It is positioned closer
to the evaporated material than the substrate on which the material is deposited.

Before the deposition the substrates are cleaned in an ultrasonic bath in the first
step with acetone, following a cleaning with propanol for about four minutes each.

3.2 Wedge Preparation

The primal approach was to determine the intrinsic damping of pure nickel. In order
to do this, a pure nickel wedge of 15 mm length with a slope of 3 nm/mm as depicted
in 3.1 was prepared. This reference wedge was prepared in order to determine the

Figure 3.1: Schematic illustration of the nickel reference sample (Si/x nm Ni).

damping parameter α in dependence of the thickness of pure nickel.
Because the damping depends on the thickness of the ferromagnetic and the non-

magnetic damping material, wedge samples of both, nickel and vanadium were grown.
In this way, more flexibility in the choice of the desired thickness is given and the
growth conditions are kept constant for every thickness, making this method prefer-
able to preparing several samples of different thicknesses. The dimensions of the
wedges and the other layers of the sample can be seen in figure 3.2.
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Figure 3.2: Schematic depictions of the prepared nickel vanadium sam-
ples. The Si/x nm Ni/3 nm V/1.5 nm Cu sample left and the
Si/8 nm Ni/x nm V/2 nm Cu right.

The wedges were built-up as follows:
Technically, there is a shutter positioned directly below the substrate that can be moved
between the substrate surface and the deposition source. This way the deposition can
be stopped, as soon as the required thickness is obtained. The motor which moves the
shutter is synchronized with the oscillating crystal. After the desired thickness of the
deposited layer is achieved, the shutter is closed systematically according to the aimed
slope of the wedge.

The length of the deposited wedges is usually 15 mm. For a wedge with a slope of
3 nm/mm, the thickness is varied from 0 − 45 nm. In figure 3.2 left is a nickel wedge
on silicon, on top of it is a constant vanadium layer of 3 nm deposited. Further the
vanadium layer is covered with a 1.5 nm copper layer in order to prevent the sample
surface from oxidation. On the right side of figure 3.2 the opposite sample wedge is
prepared, this time a constant nickel layer is covered with a vanadium wedge. The
copper layer is again deposited to avoid oxidation of the vanadium. All materials are
deposited with a deposition rate of 0.4 − 0.5 Å/s to maintain comparability. Within
the spot size of 60 μm the thickness of the wedges changes by ∼ 0.2nm which can be
neglected and the thickness in this area can be considered as constant.

3.3 Alloyed Permalloy Samples

In addition to the non-local Gilbert damping on Nickel thin films also another damping
mechanism on permalloy thin films were studied. The permalloy samples are doped
locally with the damping material. In order to do this, permalloy samples alloyed
with up to 2% Dysprosium and 1% Palladium were prepared. The preparation took
place in a UHV at a base pressure of 10−10 mbar. The preparation technique is MBE.
The substrate is held at room temperature and a growth rate of about 0.03 Å/s is
applied. This assures a uniform distribution of the doping material throughout the
sample thickness and the required ratio between nickel (80%) and iron (20%). As an
oxidation protection, the samples were finally capped with gold at room temperature.
The doping is estimated from the evaporation rates.
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3.4 Positioning of the Wedge Samples in the Experimental Setup

In order to probe a wedge sample at a defined thickness, the sample needs to be
placed in the external magnetic field in a way, that the laser spot strikes it at a defined
wedge position. For this purpose, the sample holder is installed on top of a micrometer
stage and the sample can be moved relative to the probe laser spot. The stage can be
moved in x-direction according to to figures 2.2, 3.1 and 3.2. Moving the micrometer
stage using a stepper motor with a resulting resolution of 3 μm/step, controlled by a
computer program, allows to record a reflection profile of the wedge. In figure 3.3, a
profile of a nickel wedge on a silicon substrate is depicted as an example.

Figure 3.3: Reflection measurement along the wedge profile.

For the first 5 mm, the sample is not situated within the measurement arrangement,
so that the laser spot does not strike it and the reflected signal is zero. At 5 mm
the signal suddenly increases and stays constant for about 7.5 mm. This is the point at
which the edge of the silicon substrate is moved in front of the laser spot. The reflected
signal remains constant, because there is no material deposited on the substrate, until
it reaches the nickel wedge. At the position, at which the nickel layer starts, also the
reflected signal begins to increase linearly with the nickel layer thickness. When the
wedge thickness reaches the penetration depth of light, which is around 15 nm in nickel
for a wave length of 800 nm, the reflected signal stops increasing linearly and reaches
its saturation point, although the thickness continues to grow. Due to experimental
limitations, a reflectivity scan can only be recorded for 20 mm; therefore, only a part
of the nickel wedge has been recorded (up to a thickness of 37.8 nm). This can be seen
from the reflection profile, as the increase in the reflected signal is not linear for the
whole wedge; in the end it bends down. However, knowing the starting position of
the wedge, and the slope of the increasing thickness of the nickel layer, it is easy to set
the sample to a defined thickness and measure magnetization dynamics.
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4 The Experimental Results

4.1 Analysis of the Experimental Data

Before discussing the experimental results and the different damping mechanisms, the
concept of how the relevant parameters are obtained from the measured spectra shall
be given briefly. The measured quantity is the transient Kerr rotation Δθk(Δτ), this
means the change in magnetization depending on the delay time between the pump
and probe pulse. The time scale is chosen in a way that for Δτ < 0 the system is
in equilibrium, in this case long enough after excitation, thus the magnetization is
aligned with the effective field Heff again. By fitting the measured spectrum with

Δθk = exp

(
−Δτ

τα

)
· sin (2π(Δτ − τ0)ν) + B, (4.1)

two parameters can be obtained, namely the precession frequency ν and the expo-
nential decay time τα, where τ0 is a phase shift for the sine function. The additional
constant B takes care of the reflectivity contribution to the measurement signal, aris-
ing from phonon excitations and non coherent magnetic excitations. This part of the
function represents the background of the measured spectra which is simply subtracted
and not further analyzed in this thesis. The function is fitted from 30 ps to 1 ns after
excitation, this means after the easy axis returned back to its original position and
the precession takes place around Heff . Knowing the precession frequency and the
decay time for various external fields Hext further calculations can be made. First, the
Kittel formula can be applied to fit the precession frequencies for the various external
fields for obtaining the anisotropy constant Kz. Generally, the frequency will be given
instead of the angular frequency. Equation 1.64 in section 1.5.1 can be modified to
obtain ν(Hext), thus yielding

ν =
gμB

�2π

√
μ0Hext cos φ

(
μ0Hext cos φ + μ0Ms − 2Kz

Ms

)
. (4.2)

Here, g is the gyromagnetic factor being gNi = 2.21 for nickel and gPy = 2.12 for
permalloy. The angle φ is the angle between the direction of the external field Hext

and the easy magnetization axis of the sample, Hext is the magnitude of the external
field. The saturation magnetization corresponds to 0.659 T for nickel and 0.8 T for
permalloy. The last term of the square root denotes the anisotropy field Hani, by
2Kz

Ms
= Hani.

In our experiments, the measurements were carried out for external fields Hext ≤
150 mT in 10 mT steps. The anisotropy constant Kz is obtained by fitting the ex-
tracted precession frequencies, to the squareroot function in equation 4.2. Knowing

47
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the anisotropy constant, further calculations concerning the damping factor α were
made using a modified for the experimental setup equation 1.79 from section 1.6:

α =
1

ταγ
(
cos φHext − Kz

μ0Ms
+ Ms

2

) . (4.3)

This way the damping in respect of the strength of the external field can be deter-
mined. The measurements done on the samples with a varying thickness (wedge),
allowed to determine the damping parameter in respect of the nickel layer thickness.

4.2 The Damping Mechanisms

For the discussion of the results, the knowledge of different damping mechanisms
is necessary. The modeling of the damping parameter is still a challenging task to
theorists, because even for magnetization precession without damping there are no
constants of motion. The ability to controll the damping will allow the fabrication
of materials with specific magneto-dynamic properties, needed for memory devices.
Besides this, it will also help to increase the speed of magnetic memory devices.

4.2.1 Damping Processes
Magnetic damping can be introduced by introducing an energy dissipation process.
In the following I will adopt the concept given in the lecture by M. Fähnle [9, 7].
The equation of motion 1.26 is obeyed by the magnetization vector in the energy
dissipation process. However, it is only suitable for one dynamic variable, while all
other degrees of freedom have to be integrated out. In general, the equation of motion
is non-local in time, which means, the considered dynamic variable transfers energy
and momentum to the eliminated degrees of freedom.

There are two possibilities for energy dissipation by which damping is classified:
The first is indirect damping, where the energy is transferred from the dynamical vari-
able considered to other magnetic degrees of freedom. Energy transfer to the fast
magnetic degrees of freedom, for example, the damping by Stoner excitations, that
are single spin-flip processes.
The second way is called direct damping. Here, the energy is transfered to nonmag-
netic degrees of freedom. This is usually the case when energy is dissipated to the
lattice. Here, again, two cases can be distinguished which originate from spin-orbit
coupling. On one hand, there is the intrinsic type of magnons scattering on phonons.
This is an unavoidable, material specific occurrence which can not be influenced by
any means. On the other hand, there is the extrinsic type of direct damping. This
damping is on account of magnon scattering on phonons, caused by defects and inter-
faces. Extrinsic damping can be influenced by the growth parameters or the doping
with impurities. Therefore, one way to engineer the damping is the manipulation of
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defects. It will be introduced by means of permalloy samples alloyed with low concen-
tration impurities.

In addition to the local dissipation processes, non-local damping on interfaces with
ferro- or non-magnetic layers and the considered ferromagnetic layer occur. The emis-
sion of spin waves or spin currents on the ferromagnet-ferromagnet interface or the
ferromagnet-non-magnet interface provide additional damping. This additional non-
local damping depends on the kind and the geometry of the adjacent material, as will
be seen from the measured nickel wedge double layer samples.

4.2.2 Theoretical Models for Damping
For the qualitative discussion of various direct damping mechanisms, the loss of energy
by electromagnetic radiation or via dipolar interactions between nuclei and electrons
can be neglected for the slow degrees of freedom. In this case, direct damping is
caused by spin-orbit coupling. The corresponding theory can be divided into two
classes:

The first class of theory is founded on the direct transfer from the slow degrees of
freedom to the lattice. This happens mainly by magnon-phonon scattering. The spin-
orbit coupling is included in a phenomenologic way by coupling the magnetization
M(r, t) to the elastic lattice strain ε(r, t). The damping is then mainly generated by
magnon-phonon scattering and the scattering of phonons at lattice defects.

The second class of theory is constructed on the basis of energy transfer from
magnons via the electrons to the lattice. This happens as follows: the electrons absorb
the moments of the slow degrees of freedom, and later pass these moments to the lat-
tice via electronic scattering. There are three possibilities to transfer the energy from
spins to electrons. First, there is the transfer by spin-current interactions, considered
as damping by Eddy currents. Second, there is the transfer by Coulomb interaction,
which is called the BREATHING FERMI SURFACE MODEL. The third possibility is the
magnon-electron interaction, known as the s-d damping model.

Electronic scattering can be divided into different types. First it should be stated,
that there are no pure spin-up and-spin down states. Spin-orbit coupling leads to
small spin mixing, as a result the spin-up and spin-down states are not perfectly or-
thogonal to each other. Under these circumstances, the scattering potentials have a
non-vanishing amplitude at inhomogeneities, e.g. phonons or defects.

There are four sorts of scattering processes which contribute differently to the damp-
ing process. They are sorted by the conservation of spin and the corresponding energy
band as follows:

ordinary scattering: The transitions take exclusively place between states of same spin,
but different bands. There is no spin-flip. Momentum transfer is rather small.

spin-flip scattering: In this transition the spin of the initial state differs from the spin of
the final state. The transfer of magnetic momentum is significant. Yet this effect
is strongly reduced in ferromagnets by the molecular field .
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intraband scattering: This scattering describes transition within one energy band. It is
the dominating process for small relaxation times τ . This leads to a damping
parameter proportional to the conductivity σ. ⇒ α ∼ σ ∼ τ .

interband scattering: This type of scattering appears between states in different energy
bands. It is the leading process for large relaxation times and proportional to the
resistivity ρ. ⇒ α ∼ ρ ∼ 1/τ .

The first class of damping theory described previously is based on direct transfer of
magnetic energy to the lattice. The newest approaches to model damping theoreti-
cally pertain to the second class of theory mentioned above. Namely the s-d current
model and the Breathing Fermi surface model are based on the electronic scattering
on phonons. Both models assume the near-adiabatic regime, which makes them only
useful for long relaxation times and this way valid for slow degrees of freedom. These
two models will now be discussed briefly.

s-d Current Model

The s-d model based on [30, 10] can be found in [9, 7] described in detail. The
idea behind this model is, that both the delocalized s and p conduction electrons
(m(r, t)) near the Fermi surface and the localized d electrons far below the Fermi
surface (M d(r, t)) contribute to the magnetization. The former are responsible for
the spin-dependent transport, the latter for the magnetization dynamics. The orbital
moments are neglected. The damping goes on the account of the scattering of the
conduction electrons. The total magnetization M(r, t) then reads:

M(r, t) = M d(r, t) + m(r, t). (4.4)

This leaves to two possibilities for the dynamics, as clarified in figure 4.1. The first is
M d(r, t) and m(r, t) precessing in phase due to the s-d exchange interaction. In this
case there is no spin flip scattering (τsf → ∞). The second possibility is a phase shifted
precession of the conduction electron magnetization around the localized d electron
magnetization. This means in particular that a number of conduction electrons δm is
oriented perpendicular to the d electrons magnetization. This precession around the
d electron magnetization generates a torque which is perpendicular to the precession
direction of the d electron magnetization, turning the conduction electron magnetiza-
tion in the direction of the d electrons. This additional torque increases the damping
which is growing with the number of spin-flips.

The Landau-Lifshitz-Gilbert equation for the d moments then becomes

Ṁ d = −γ (M d × Heff,d) +
1

Md

M d × αṀ d + T . (4.5)

The first term on the right hand side is the precession of the d electrons influenced by
the effective field. The second term stands for the damping of the d electrons. The
third represents the additional torque from the scattering of the conduction electrons.
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Figure 4.1: Magnetization orientations of the s and d electrons with spin-flip scattering
(right) and without spin-flip scattering (left).

Considering the form of the additional torque and connecting it with the conduction
electron magnetization through the continuity equation the Gilbert equation can be
simplified to a form for the "effective" damping α

′. This is the damping without spin-
flip scattering α plus the damping originating from the spin-flip scattering Δα (α′

=
α + Δα). The Gilbert equation is then:

Ṁ d = −γ (M d × Heff,d) +
1

Md

M d × α
′
Ṁ d. (4.6)

This formulation of the "effective" damping parameter α
′ gives a rise to regimes, in

which the damping can be calculated in respect of the spin-flip scattering time τsf . For
small τsf we have a direct proportionality of Δα and obtain:

τsf → 0 and τsf < τex ⇒ α
′
= α +

τsf

τex

· m0
s

Md

,

with τex being the precession period of the conducting electrons around the d electrons
and m0

s representing the adiabatic part of the induced magnetization in the conduction
electrons, ms.

For bigger τsf the damping becomes overcritical and α
′ is inversely proportional to

the spin-flip scattering time. We obtain the relation:

τsf → ∞ and τsf > τex ⇒ α
′
= α +

(
2α +

m0
s

Md

)
· τex

τsf

The following conclusions can be made for this model. First, high spin-flip rates (τex 	
τsf , α ∝ τsf) imply fast transfer of angular momentum to the lattice. Further, for a
growing τsf the energy dissipation is faster and the damping parameter larger. Second,
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for low spin-flip rates (τex � τsf), the damping originates from the same mechanism
as described by Tserkovnyak et al. [26], damping by spin currents.

In the case of monotone scaling of the spin-flip time with the temperature, the damp-
ing parameter depends as follows on τsf . On one hand, at low temperatures, this leads
to small spin-flip times, α is proportional to the conductivity σ. On the other hand, at
high temperatures and longer spin-flip relaxation times, the damping becomes propor-
tional to the resistivity ρ. The experimental confirmation of the concept that both the
resistivity and the conductivity contribute to the damping considering the temperature
dependence has been provided especially for nickel in FMR experiments. Furthermore,
this model underestimates the contribution of the d electrons to the damping and pre-
dicts a smaller Gilbert damping parameter than found out in experiments.

Conclusively we can state that the s-d model is applicable to describe current trans-
port in metals. It is also applied to describe damping in 3d systems with 4f impurities.
For transition metals however the scattering of the d electrons has to be taken into
account. This is the case in the Breathing Fermi Surface Model, which will be sketched
in the following section.

The Breathing Fermi Surface Model

This model is introduced in detail in [7], so that we can restrict ourselves to discuss its
outcome. In the Breathing Fermi Surface Model, the conduction s and p electrons as
well as the d electrons are considered delocalized. The Fermi surface is determined by
the dipolar, the Zeeman and the spin-orbit interaction energies in an external magnetic
field. During the magnetization precession the direction of the magnetization changes
or in other words the propagation of spin waves causes a deformation of the Fermi
surface. After the deformation, the electrons near the Fermi surface, try to occupy
the new states within the Fermi sea. This energy redistribution of energy, caused by
electron scattering, delivers the damping parameter. The spin energy dissipation in
this model is included phenomenologically by electron relaxation times, rather than
microscopically.

The ab − initio density-functional theory using the single-electron functions to de-
scribe electron scattering, introduced by Fähnle and coworkers [23, 9] is an improve-
ment of the original Breathing Fermi surface model developed in the 1970’s.

In order to describe magnetization, the effective single-particle theory uses a wave
function Ψj,k for every electron in a band with the band index j and the wave vector
k. The orbital momenta are considered to be quenched to a high extend by molecular
fields. The magnetization is then given by the sum of all spin components. The band
structure energy is then calculated as the sum of the single electron energies εjk, ac-
cording to the density functional electron theory. Further, using the strictly adiabatic
approximation, the resulting time dependent wave function is a solution to the time
independent wave equation for the effective potential, which depends on the momen-
tary directions of the atomic magnetic moments {ei(t)}. This makes also the single
electron energies dependent on the orientation of the atomic magnetic moments. Al-
together, small changes in {ei(t)} cause modifications in the Fermi surface, hence the
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name Breathing Fermi surface.
With approximations to a slightly non-adiabatic situation, the outcome is a direction

dependent Gilbert damping parameter, represented by a matrix α, which replaces the
scalar damping parameter α in the Gilbert equation:

Ṁ = −γM × Hani +
1

M
M ×

(
α · dM

dt

)
(4.7)

with the anisotropy field Hani being responsible for the precession and the second
term representing the damping part of the effective field.

This dependence of the damping on the direction of the magnetization turns out
to be significant by a factor of 4 already for bulk materials in transition metal ferro-
magnets and even larger in systems with reduced symmetry like monolayers or wires.
These latter systems have directions for which the damping is zero. This model pro-
vides an additional option to control the switching processes in structured materials,
but has not been experimentally verified up to now.

The simple relation between the anisotropy energy and the damping parameter, the
larger the damping, the larger the anisotropy, does not hold for the Breathing Fermi
surface model.

Finally the limit of the Breathing Fermi surface model has to be discussed. The
scattering process in this model includes only electrons near the Fermi surface, this
allows only intraband scattering to contribute to the damping. The demagnetization
process on the femtosecond time scale is dominated by relaxing electrons, excited by a
laser pulse, into higher energy bands. Therefore, this near adiabatic model cannot be
applied for this ultrafast processes, yet the processes in the sub ns regime investigated
in below are well described by this model.

4.2.3 Non-local damping
This last section on damping mechanisms will deal with the non-local damping, inves-
tigated on the nickel vanadium samples. Generally, the damping parameter increases,
when a normal metal layer is attached to the ferromagnetic layer. In principle, the
non-local damping works as follows: spin currents are emitted by the magnetization
torque to the interface of the ferromagnet with the normal metal layer. This way an-
gular momentum is transfered to the normal metal layer, which affects the damping.
The affection of damping is explained with the help of transport theory in multilayers
as introduced in [26, 25, 27]. The approach to non-local damping will be introduced
according to the description in [7]. Starting with a trilayer as in figure 4.2, where the
ferromagnetic layer is enclosed by to normal metal layers. The additional damping,
which adds up to the intrinsic damping, is due to spin dependent scattering at the
interface between the normal metal layers and the ferromagnetic layer. This process
is known as a spin pumping from the ferromagnetic to the normal metal layer and
depends on the characteristics of the materials, as well the ferromagnetic F, as the
normal metal layer N.
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Figure 4.2: Model of non-local damping for a ferromagnetic layer F of thickness d
between two normal metal layers N of thickness L in an effective field
Heff (N/F/N). The precessing magnetization in the ferromagnetic layer is
m.

As a start, we want to implement the non-local damping as additional damping
to the intrinsic damping. The origin is the Landau-Lifshitz-Gilbert equation for the
magnetic unit vector m = M/Ms without non-local damping processes:

ṁ = −γm × Heff + α0m × ṁ, (4.8)

with the effective field Heff derived from the free energy, like above, and α0 the
intrinsic damping constant. Taking the denotation from figure 4.2, the ferromagnetic
layer F has the thickness d and the normal metal layers N, each the thickness L and
the angle θ between magnetization m and the effective field Heff . The energy change
caused by the scattering at the interfaces between ferromagnet and the normal metal
N/F depends on the thickness L and the angle θ is

E(L, θ) =
1

2πi

εF∫
−∞

ε
∂

∂ε
ln det s(L, θ, ε)dε,

where s is the scattering matrix of the three layers. Bearing this in mind, what does
spin transfer between the ferromagnet and the normal metal look like?

A torque τ , which is the derivative of the energy change over the precession angle,
is responsible for the energy transfer:

τ =
∂E

∂θ
.

According to the conservation of momentum law, τ needs to be equal with the spin
injection current Is, which is implemented into the Gilbert equation as an additional
term:

ṁ = −γm × Heff + α0m × ṁ +
γ

MsV
Is (4.9)
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The spin current is normalized to the volume V and the saturation magnetization Ms

of the ferromagnet. The emission of spin currents is triggered by the precession of the
magnetization. The net current Is consists of the DC spin current I0

s, the pump current
Ipump

s of spins pumped out of the ferromagnetic layer to the normal metal layer, and
the spin current coming back from the normal metal layer Iback

0 :

Is = I0
s + Ipump

s + Iback
0 . (4.10)

Without any bias voltage applied, the DC current is negligible. Therefore the net
current consists out of the pump current out of the ferromagnetic layer and the current
coming back to the ferromagnetic layer. These last two currents appear only when the
magnetization direction changes.

When the magnetization starts precessing, e.g. after it has been brought out of
equilibrium by an intensive laser pulse, Ipump

s flows out of the ferromagnet. The spin
current into a normal metal layer

Ipump
s =

�

4π

(
Arm × dm

dt
− Ai

dm

dt

)
, (4.11)

depends on the complex spin pumping coefficient A ≡ Ar + iAi. A = g↑↓ − t↑↓ in turn
depends on the scattering matrix s, since

gσσ′ ≡
∑
mn

[δmn − rσ
mn(rσ′

mn)∗] (4.12)

and
t↑↓ ≡

∑
mn

t
′↑
mn(t

′↓
mn)∗ (4.13)

are the dimensionless conductance parameters consisting out of reflection coefficients
r↑mn(r↓mn) for spin-up(spin-down) electrons on the normal metal layer and the transi-
tion coefficients t

′↑
mn(t

′↓
mn) for the transmitted spin-up(spin-down) electrons through the

ferromagnetic layer. The subscripts m and n label the incoming and outgoing states
at Fermi energy in the normal metal layer. These coefficients are the matrix elements
of the the reflection and transition matrices r(r′) and t(t′) for the right(left) normal
metal layer, which build up the scattering matrix:

s =

(
r t′

t r′

)
.

For ferromagnetic films, thicker than their transverse spin-coherence length λsc,

d > λsc = π/(k↑
F − k↓

F ),

where k
↑(↓)
F are the spin-dependent Fermi wave vectors, t↑↓ can be neglected. For

transition metals λsc is in the range of the lattice constant, a few Å, so that the interface
F-N spin pumping is determined entirely by the DC conductance A = g↑↓ ≡ g↑↓

r + ig↑↓
i .
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In addition to that, the imaginary part of g↑↓ is much smaller, than the real part. For
F-N interfaces, this means, that the spin pumping coefficient can be approximated
by A ≈ g↑↓ ≈ g↑↓

r . For further simplification only one of the two interfaces will be
considered.

There are two possibilities for spins pumped to the N-F interface. They can either
accumulate at the interface or relax through spin-flip scattering. The spin current
returning back into the ferromagnetic layer depends on the accumulation at the inter-
face, which is material specific for the normal metal layer. It is given by:

Iback
s = βg↑↓

r Is. (4.14)

As can be seen from the equation above, the returning current is governed by the "back
flow" factor β,

β ≡ τsfδsd/h

tanh(L/λsd)
. (4.15)

The "back flow" factor depends on τsf , the spin-flip relaxation time, λsd the spin-flip
diffusion length and δsd denoting the effective energy-level splitting of the states par-
ticipating in the spin-flip scattering process.

With these findings for the spin current Is, the equation of motion 4.9 can be written
in terms of the intrinsic damping α0 plus the non-local damping Δα from the injected
current:

ṁ = −γ [m × Heff ] + (α0 + Δα) [m × ṁ] (4.16)

with

Δα =
γ�

4πMsV

g↑↓
r

1 + βg↑↓
r

. (4.17)

Δα is directly dependent on the mixing interface conductance g↑↓
r and originates from

energy dissipation due to non-local damping processes at the N-F interface.
To conclude, we have a non-local damping, which strength is defined by g↑↓

r and the
factor β. The largest damping is achieved, when there is no spin current returning back
to the ferromagnetic layer, i.e. when β → 0. Otherwise, when there is a significant
returning current Iback

s , Δα decreases. This is the case, when β 	 1/g↑↓
r . Then the

spin current pumped into the normal metal layer is entirely returned back into the
ferromagnetic layer.

For most metals with low impurities, the factor β depends on the number of trans-
verse channels Nch and the spin-flip probability at each scattering ε and reads:

β =

(
2πNch

√
ε

3
tanh(L/λsd)

)−1

. (4.18)

In the first approximation, Nch ≈ g↑↓
r , the damping parameter Δα can be given by

Δα =
γ�

4πMsV
g↑↓

r

(
1 +

1

2π
√

ε
3
tanh(L/λsd)

)−1

(4.19)
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At this point we see that the highest Δα is found for a high spin-flip probability ε and
a layer thickness L of at least double the spin-diffusion length λsd. With a high enough
spin-flip relaxation rate, the spin accumulation at the interface with the normal metal
layer is overcome. The spin-flip relaxation time τsf can be roughly estimated using the
atomic number Z. The relation

1

τsf

∝ Z4 (4.20)

says, that heavier metals, Z ≥ 50 and p or d conduction electrons come up with a
spin-flip probability of ε ≥ 10−1, which makes them ideal spin sinks. Lighter metals
however with Z ≤ 50, and s conduction electrons the spin-flip probability drops to
ε ≤ 10−2, which makes them not effective as spin sinks. Therefore, vanadium, with
Z = 23, is expected to be an ineffective damping material. By increasing the thickness
L of the normal metal layer, the spin accumulation at the interface F-N can be reduced,
but only to a certain extend, due to the saturating behavior of the tanh(x) function for
x > 3, this way a limit is set in the rising of Δα. Therefore, increasing the vanadium
thickness should not increase damping significantly.

Equation 4.19 suggests that the ferromagnetic layer needs to have a small volume
V = d · S, in order to gain additional damping from spin current emission. However,
the entire cross section of the interface between the ferromagnetic and the normal
metal layer is used to pump the spin current through. Therefore, this quality is not
variable and the damping cannot depend on it. For that reason, the spin pumping
coefficient A is to be replaced by a conductance parameter G normalized to the cross
section S:

G↑↓ =
A↑↓

S
[Ω−1m−2]

This leads to an effective damping parameter α for an ideal spin sink:

α = α0 + Δα = α0 +
γ�

4πMsd
G↑↓

r , (4.21)

which suggests that non-local additional damping Δα is higher in thinner ferromag-
netic layers.

4.3 Results for the Non-Local Gilbert Damping Experiments

To characterize the damping properties of nickel, we first determined the intrinsic
damping parameter for pure nickel thin films at thicknesses 1 nm to 50 nm as a ref-
erence. Later on, in order to analyze the non-local Gilbert damping in the case of a
light material, a vanadium layer on top of the nickel layer was studied. The results are
presented in the following two sections.
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Figure 4.3: Spectra measured for the nickel reference wedge Si/x nm Ni at 150 mT
external field oriented 30◦ out of plane. For nickel thicknesses 2 nm ≤ x ≤
22 nm and their fits.
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4.3.1 The Intrinsic Damping of Nickel
To analyze the intrinsic damping properties of a nickel film a Si/x nm Ni/7 nm Cu sam-
ple was studied initially, where 1 nm ≤ x ≤ 50 nm. The 7 nm copper layer served as a
protection in order to prevent the nickel wedge from oxidation. Initially, copper was
chosen, because it is a bad spin sink and does not influence the damping significantly.
However, the evaluation, which will not be introduced any further within this the-
sis, shows that for nickel thicknesses below 10 nm the damping parameter increases
by 300%. The increase shows also larger for smaller external fields (90 mT) than for
bigger fields (150 mT).

In order to exclude any influence of the copper layer on the increase of the damp-
ing parameter for thicknesses below 10 nm, a nickel wedge without a protection layer
was prepared. Details of the wedge dimensions are given in section 3.2. This wedge
Si/x nm Ni, was only measured up to thicknesses of 22 nm, because the damping re-
mained constant for thicker layers. Most important was to find out why the intrinsic
damping increases for thin nickel layers.

The experiment was repeated with the Si/x nm Ni sample. Precession spectra for
external fields of 90 mT, 120 mT and 150 mT oriented 30◦ out-of-plane to the sam-
ple surface. The spectra presented as an example in figure 4.3 were recorded in an
external field of 150 mT. There it can be seen that the precession frequency hardly
changes for nickel thicknesses above 10 nm, but decreases for nickel thicknesses below
10 nm. The decrease of the precession frequency indicates an increase in the out of
plane anisotropy constant Kz and therefore the anisotropy field Hani. Further treat-
ment of the data proves this interpretation. The extracted precession frequencies ν
show an almost constant precession frequency for nickel thicknesses above 10 nm and
a drop in frequency for thicknesses below 10 nm by a factor of two, as can be seen in
figure 4.4 left. The same behavior is observed for different external fields. Further,
the anisotropy field Hani increases for nickel thicknesses below 10 nm, while it stays
constant for thicknesses above, as can be seen in figure 4.4 right. The errors, of 1 nm
for the thicknesses above 10 nm, are due to switching off the laser between measure-
ments. The spectra for thicknesses from 1 nm to 8 nm were recorded on one day. The
thicker layers were measured on the following day. Switching off the laser between
measurements caused a laser spot displacement of altogether 0.5 mm at the sample
surface, which gives a inaccuracy of 1 nm in thickness. This means that the distance
between the data points measured later is indicated correctly, but the whole set of
points might have to be shifted by about 1 nm.

The final result, the damping parameter α calculated according to section 4.1 and
plotted in respect of the thickness for different magnetic fields, is shown in figure 4.5.
It shows that the damping parameter α stays constant between 0.035 and 0.045, when
the nickel thickness is above 10 nm for all applied fields. However, when the nickel
layer becomes thinner than 10 nm, the value of the damping parameter α rises up to
0.1 for 150 mT, and even up to 0.15 for a weaker external field of 90 mT. Although the
Ni film is saturated for all field values.

The second set of measurements, on the Si/x nm Ni sample without a protection
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Figure 4.4: Precession frequencies for different external fields, left and the anisotropy
field Hani deduced from the Kittel fit, plotted as a function of the nickel
thickness from 1 nm − 22 nm, for the Si/x nm Ni sample.

Figure 4.5: The damping parameter α in respect of the nickel film thickness for the
Si/x nm Ni sample, plotted for different external magnetic fields oriented
30◦ out-of-plane.

layer, presented above, excludes any non-local damping from the copper layer. The
question arising at this point is the reason, why the damping increases for nickel layer
thinner than 10 nm and, secondly, why this effect is smaller for larger external fields,
while the damping does not depend on the external field for nickel thicknesses above
10 nm.
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Figure 4.6: The ripple effect. Spins are not alinged parallel anymore, the directions
are slightly tilted.A schematic drawing (left). Kerr images of magnetiza-
tion processes in a field rotated by 168◦ and 172◦ from the easy axis in a
Ni81Fe19(10 nm)/Fe50Mn50(10 nm) bilayer (right), taken from [5].

One possible answer to the first question is the magnetic ripple effect described in
[18]. In that case the ripple effect holds as an explanation for the broadening of the
FMR line width on a FeTiN sample. The name for this effect arises from a ripple-like
alignment of the spins, as indicated in figure 4.6 which shows a schematic depiction on
the left and Kerr microscopy recordings of a Ni81Fe19(10 nm)/Fe50Mn50(10 nm) bilayer
in a rotated magnetic field. The directions vary from position to position through the
film in a ripple-like manner. The origin of this tilting angle is a locally changing easy
axis that deviates from the macroscopic magnetization direction. Within the slightly
tilted directions, the magnetization precesses with slightly different frequencies. This
leads to a broadening of the line width in FMR experiments. In the case of all-optical
pump-probe experiments an area of 30 μm is probed at once and a superposition of all
the spin precessions within this area is recorded as the oscillating magnetization. Thus
the recorded Δθk can not be described by equation 4.1. The involvement of several
different frequencies into the precessions examined within the laser spot size, leads to
recording rather a superposition of spectra, than a single one. This superposition of
precessions is described for the case of a 7% deviation from the central frequency by:

Δθk ∼ exp

(
−Δτ

τα

)
· 1

15

7∑
i=−7

sin

(
2π (Δτ − τ0) ·

(
1 +

i

100

)
· ν
)

. (4.22)

The i’s indicate the variation from the central frequency involved.
We have started to test our model on the 10 nm nickel layer, whose α(Hext) depen-

dency could be explained within the macro spin model, because the damping param-
eter does not differ from the damping parameters for the thicker layers, αdNi=10 nm =
αdNi>10 nm = 0.043 and also αd=10 nm(Hext) = const. is obeyed for the applied external
magnetic fields. The fitting parameters τα and ν from the spectra are taken as input for
equation 4.22 to simulate the ripple effect. The aim was to find out whether there is a
significant effect on the damping parameter, when several precession frequencies are
involved. Using equation 4.22 by implementing frequencies varying by more than 7%
results in a beating, that increases the precession amplitude again after 800 ps. Such
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behavior was not observed whithin the experiments. Unfortunately, the delay time was
experimentally limited to 1 ns, so it is not confirmed experimentaly whether the pre-
cession amplitude increases for a delay time Δτ > 1 ns. This would allow to find out
how large the deviation from the central frequency is exactly. The results for the super-
position compared to the fit to the measured data can be viewed in figure 4.7. Here it
is already visible that by superpositioning several slightly varying frequencies around a
central frequency, the amplitude decreases stronger than in the single frequency case.
Even though the damping constant is not changed, the apparent damping is strongly
increased.

Figure 4.7: The fit to the measured data at 10 nm nickel layer thickness using a single
sine function, compared to the artificially created spectra by the super-
posed functions with a frequency spectrum broadend by 5% and 7% (left).
The frequencies involved into each superposition (right). The frequency
amplitudes are devided by the number of frequencies involved.

To extract the apparent damping from the simulated artificial datasets, a single sine
function model (equation 4.1) was fitted to these datasets again and the damping
parameter was calculated according to the usual procedure. The broadening of the
frequency by 5% resulted in a damping increase by 0.01 up to α = 0.053. The 7% broad-
ening even increased the damping parameter by 0.02 to α = 0.063. The anisotropy field
stayed constant at Hani = 55 mT, because there was no net frequency change in the
"superposed" spectra. Varying the frequencies in equation 4.22 by 7% from the central
frequency increased the beating over the exponential decay, so that fitting equation
4.1 did not match the superposition anymore. The variation of the frequencies by 5%
in the sum function still allowed for a good fit to equation 4.1. Therefore, the latter
will be considered for further calculations.

In the next step, reverse calculations were carried out with the data measured for a
lower nickel thickness. In order to do this, data obtained at the 4 nm nickel thickness
was chosen. At this thickness, the damping parameter is α = 0.05 − 0.06 for the
different external fields. The simulation of the ripple effect on the data of the 10 nm
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Figure 4.8: Damping parameter α extracted from the measured data at 40 nm Ni,
compared to the damping parameter calculated for the simulated artifical
dataset from the superposed function for the 4 nm Ni.

thick nickel layer increased the value of the damping parameter to α = 0.053, which
is between the values obtained experimentally for the 4 nm thick nickel layer. In the
reverse calculation a superposition function, equation 4.22, is fitted to the measured
data for the 4 nm thick nickel layer and a different value for τα, the exponential decay,
is obtained. The exponential decay increases by about 50%. The anisotropy field,
Hani ∼ 400 mT stays constant within this calculation. However, the increased τα leads
to a smaller damping constant. It decreases to α = 0.035 − 0.055 for the different
external magnetic fields that means, by about 0.01 for each field value. The corrected
damping parameter values are around the experimentally obtained value of α = 0.043
for the 10 nm thick layer then, but still show a pronounced field dependance.

Thus, from figure 4.8 can be seen that the ripple effect can not be responsible for the
total difference in the damping parameter obtained for nickel thicknesses below 10 nm
in the different applied external magnetic fields. However, there are other effects con-
tributing to measurement signal at these thicknesses. A major point is that for the
thinner the nickel layer the measured spectrum has has a much stronger exponential
background, which has to be subtracted and makes a proper separation difficult. The
higher the background of noncoherent excitations arises from a stronger demagneti-
zation of the thinner films [6]. By fitting the measured spectrum to equation 4.1, the
background B is also an exponential function containing parameters, which are fitted
to the measured data. This leads to dependencies of the parameters, which can shift
the exponential decay τα and then leads to a higher damping parameter α. Especially
for low external magnetic fields the precession amplitude measured on sample thick-
nesses below 10 nm is small and the precession frequency decreases, so that within one
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nanosecond only 2 or 3 precession periods can be recorded. Therefore, the inaccuracy
in the parameters obtained from the fit increases, which contributes to a discrepancy
between the damping parameters for the different magnetic fields.

To confirm a strong local variation of the anisotropy Ki, resulting in a frequency
spread νi below 10 nm, Kerr microscopy images habe been examined. Here, the con-
trast does not allow to resolve ripple like fluctuations for field values higher than the
saturation field. Therefore, the field range below was studied next.

The sample was situated in an external magnetic field oriented parallel to the sample
surface. Two thicknesses were examined, one 15 nm and one 3 nm. In this experiment,
the spatial magnetization distribution of the sample in an external field for each, one
thickness below and one above 10 nm, was recorded. The Kerr microscope recordings
are depicted in figure 4.9. In Figure 4.9a) the demagnetized sample at the two thick-
nesses, 15 nm (left) and 3 nm (right) is shown. Figure 4.9b) shows the recordings for
the 15 nm thick layer and figure 4.9c) the recordings for the 3 nm thick layer. The de-
pictions of the demagnetized sample already show that the domains in the 3 nm thick
sample position are much smaller ≤ 20 μm, than in the 15 nm thick sample position
∼ 60 μm. Switching the external field from positive to negative, the magnetization

turns almost uniformly from one to the other direction for the 15 nm thick layer, as can
be taken from the pictures for 0.8 mT over 0 mT to − 0.8 mT.

At external fields larger than 1 mT domains of different directions build up. These
domains are larger than 20 μm. Further increasing the external fields, the domains of
a single magnetization direction become larger. This is why by probing the sample
with a laser spot of 30 μm a macro spin behavior can be observed. The 3 nm thick
nickel position on the other hand shows, several small domains of different magne-
tization directions turning, as the field magnitude grows. These domains are much
smaller than 20 μm and this way also smaller than the laser spot used to probe the
time resolved magnetization change. The last picture on the bottom right in figure
4.9c) shows that even increasing the external field above saturation magnetization
still leaves little domains pointing in slightly different directions. This considered
to be the ripple effect, applied in the previous calculations, summing over differing
precession frequencies. The decrease of the damping parameter α for increasing ex-
ternal fields Hext can be explained with different anisotropy fields Hani involved. For
the larger fields on one hand, the ripple effect becomes smaller since the deviation
from the macroscopic magnetization direction are smaller. That means the frequency
peak is sharper, the anisotropy field distribution smaller and the observed damping
decreases. For lower external fields on the other hand, the ripple alignment is more
distinct, the net anisotropy field is larger and so is the measured damping parameter.
As mentioned above, the Kerr microscopy measurements were performed in an exter-
nal field oriented in-plane, i.e. parallel to the sample surface. In the time-resolved
MOKE measurements, the external magnetic field was oriented 30◦ out of plane. For
this geometry, the ripple effect is expected to influence the sample even in fields larger
than saturation magnetization.

Concluding, it can be stated that the intrinsic damping of the nickel films studied is
α = 0.043(5). The experimentally observed increase of damping for layers below 10 nm
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(a) The domains of the demagnetized sample at
15 nm thickness (left) and at 3 nm (right).

(b) The domains, switching from positive to negative field, recorded at 15 nm nickel thickness.

(c) The domains, switching from positive to negative field, recorded at 3 nm nickel thickness.

Figure 4.9: Kerr microscopy recordings of the Si/x nm Ni sample with the external field
applied in plane, along the wedge profile, provided by [12].

can be explained quantitatively by the occurring ripple effect. The increase in damp-
ing for lower external fields can be explained qualitatively from the Kerr microscopy
recordings and the error arising from the subtracted background of the recorded sig-
nal. Unfortunately the Kerr angle resolution does not allow to see the extend of the
ripple effect in external fields of the magnitude applied in our experiments.
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4.3.2 Non-local Gilbert Damping with Vanadium
The non-local damping parameter is examined using a Si/Ni/V wedge sample. To
determine the influence of an attached normal metal vanadium layer to the ferro-
magnetic nickel layer, two different samples were examined. First, with a constant
vanadium layer thickness, Si/x nm Ni/3 nm V/1.5 nm Cu with 1 nm ≤ x ≤ 45 nm
and second, with a constant nickel layer thickness, Si/8 nm Ni/x nm V/2 nm Cu, with
1 nm ≤ x ≤ 45 nm. The vanadium thickness for the sample was chosen to be 3 nm,

(a) Varied Ni thickness. (b) Varied V thickness

Figure 4.10: Spectra for varied nickel thickness from 1 − 28 nm measured on the
Si/x nm Ni/3 nm V/1.5 nm Cu sample with a constant 3 nm vanadium
layer (left) and on the sample Si/8 nm Ni/x nm V2 nm Cu, with a con-
stant 8 nm nickel layer and varied vanadium thickness from 0 − 6 nm
(right) measured in an external field Hext = 150 mT oriented 30◦ out
of plane.

because a thinner layer would have negligible influence on the damping. The MOKE

signal on thicker layers is too weak, because not enough light is transmitted to be
reflected on the nickel layer, where the Kerr rotation comes from. Therefore, the
Si/8 nm Ni/x nm V/2 nm Cu sample with a constant nickel layer thickness could only
be examined up to a vanadium thickness of 6 nm. At thicker vanadium layers, the
recorded precession amplitude can no longer be distinguished from the noise. The
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precession spectra for both samples, with the variable nickel layer thickness and the
variable vanadium layer thickness are introduced in figure 4.10. The left side of figure
4.10 shows the spectra for a varied nickel thickness measured in a 150 mT external
field. An increase in precession frequency is significant when increasing the nickel
thickness up to 10 nm, after that the frequency stays constant. In the other case, when
increasing the vanadium layer thickness, no change in frequency can be distinguished.
The constant frequency predicts a constant anisotropy field for all vanadium thick-
nesses measured. At this point, no significant change in the damping parameter α due
to the vanadium layer thickness is expected.

In the following we will first analyze the sample with the varied vanadium thick-
ness, before discussing the experimental results of the varied nickel layer sample. On

Figure 4.11: The precession frequencies ν for different external fields Hext (left) and
the anisotropy fields Hani (right) in respect of the vanadium layer thick-
ness, measured on the Si/8 nm Ni/x nm V/2 nm Cu sample.

the left hand side in figure 4.11 can be seen more clearly than from the spectra that
the precession frequency only slightly rises by about 0.2 GHz with the increase in the
vanadium layer thickness. Consequently, the anisotropy drops slightly by around 20%,
as the vanadium layer thickness increases from 0 − 2.5 nm. For larger thicknesses the
anisotrpy field stays constant at around 300 mT. These results indicate a relatively con-
stant damping parameter α independent from the vanadium layer thickness, especially
for vanadium layers thicker than 2.5 nm.

The opposite is observed, when the nickel layer thickness is varied, as can be seen
from figure 4.12. The precession frequency, shown on the left hand side, raises with
the thickness of the nickel layer by about 2 GHz from 1 nm to 10 nm, in the same
manner, as was already observed for the pure nickel wedge sample. For thicknesses
above 10 nm there is no significant change in the precession frequency.

With the change in precession frequency also the anisotropy field Hani changes. An
increasing frequency usually implies a drop in the anisotropy field, so that in analogy
to the frequency the anisotropy field decreasesby about 50% as the the nickel layer
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Figure 4.12: The precession frequencies ν for different external fields Hext (left) and
the anisotropy fields Hani (right) in respect of the nickel layer thickness,
measured on the Si/x nm Ni/3 nm V/1.5 nm Cu sample.

thickness increases up to 10 nm. For nickel layers thicker than 10 nm the decrease of
the anisotropy field becomes insignificant, but a slight change is still noticable. Again,
at this point we expect a drop in the damping parameter, when increasing the nickel
layer thickness up to 10 nm and a rather constant α for nickel layer thicknesses above
10 nm. From figure 4.13 can be seen that as concluded, vanadium does not have any
influence on the damping parameter. Firstly, for the varied vanadium layer thicknesses,
α stays at a constant value of 0.040(5), which is around the value for the measurements
on the pure nickel sample. The values also do not vary significantly for the different
external fields applied. The slight drop of α for the vanadium layer thickness above
5 nm originates from the bad reflection properties of vanadium. Secondly, there is no
significant change in the damping parameter for the nickel layer thickness from 26 nm
down to 10 nm, the value is about the value for the pure nickel layer measured. But
in this case α does not increase above the value of around 0.04 nm, until the nickel
layer thickness decreases down to 5 nm. Only below a layer thickness of 5 nm the
damping raises and shows a similar behavior as the reference pure nickel layer sample.
It seems, that the vanadium layer has an influence on the ripple effect. This way, the
increase of the damping parameter, a superposition of different precession frequencies,
is repressed to lower nickel thicknesses. Once the damping rises for nickel thicknesses
below 5 nm, the gap for the different applied magnetic fields arises, similar to the
undamped nickel layer.

Comparing this result for non-local damping with the results presented in [7], it fits
to the spin current model. For metals with Z < 50, namely aluminum Z = 13 and
copper Z = 29, the damping does not increase significantly, but stays at α ≈ 0.04. For
palladium with Z = 46 the value of alpha raises to about 0.05; dysprosium with Z = 66
the damping increases to 0.065. Therefore, the negligible damping enhancement found
out in our experiments with vanadium fits into this scheme.
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Figure 4.13: The damping parameters α of the two samples. On the left side for var-
ied nickel thicknesses with a constant vanadium damping layer thick-
ness (Si/x nm Ni/3 nm V/1.5 nm Cu) and on the right side for a constant
nickel layer thickness with a varied vanadium damping layer thickness
(Si/8 nm Ni/x nm V2 nm Cu).

4.4 Results for the Local Gilbert Damping Experiments

In order to examine local Gilbert damping, four samples of 12 nm thickness were mea-
sured in the time resolved MOKE experiment, namely a pure permalloy sample, Py,
two samples doped with one and two percent dysprosium respectively, Py1Dy99 and
Py2Dy98, and one sample doped with two percent palladium, Py2Pd98. These samples
were preapared by MBE. The doping rate was estimated by the evaportation rates. To
examine the outcome of these measurements on the permalloy samples doped by low
percentage impurities we, will first have a look at the measured spectra. Beginning
with figure 4.14, spectra for three differently doped samples measured in the same
external field strength of 150 mT are presented. The impact of the impurities on the
damping is already distinct from this depiction. For all three spectra the precession am-
plitudes are normalized to the same value. As a function of the delaytime δτ however
the amplitudes decline differently. For the undoped pure permalloy sample the pre-
cession amplitude barely declines after one nanosecond, as the top spectrum shows.
In contrast to this, the amplitude of the two bottom spectra of samples doped with
2% palladium and dysprodium respectevly, declines significantly after one nanosec-
ond. The dysprosium doped sample is even damped stronger than the one doped with
palladium.

Additionally, a look at the spectra measured in different external magnetic fields
Hext shows no change in precession frequency. In figure 4.15 the spectra for the pure
12 nm permalloy layer sample measured systematically in external fields of descending
strength are depicted as an example. The spectra for the other samples show the same
characteristics. This leads to the assumption, that damping is field independent and
the same value for the damping constant α should be calculated for all external fields
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Figure 4.14: Spectra of three differently doped permalloy samples at the same external
magnetic field, 150 mT and 30◦ out-of-plane. The beginning amplitudes
of the three spectra are scaled to the same value.

occurring.
Further analysis confirms that the impurities indeed have an impact on the damping

parameter. The next step, after extracting the precession frequency ν and the decay
time τα, is to find out the anisotropy fields. Figure 4.16 shows an increasing frequency,
as the impurity amount is increased. The lowest frequencies occur for the pure permal-
loy sample. The doping with 2% palladium does not change the frequency significantly.
However, the frequency is higher for the dysprosium doped sample and increases with
the amount of dysprosium from 1% to 2%, which is clarified by the depiction of the
anisotropy field versus the amount of impurities in figure 4.17. The anisotropy field in-
creases linearly with the percentage of doping in this regime for dysprosium, by 100%
per percentage of dopant, but increases only slightly for the 2% palladium doped sam-
ple. An influence on the anisotropy by rare earth doping is expected since the rare
earths are highly anisotropic because of their 4f shell.

The final result, as assumed from the previous calculations, meets the expectations.
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Figure 4.15: Spectra for the 12 nm pure permalloy sample measured in different exter-
nal fields, in the 30◦ out-of-plane geometry and their fits.

As presented in figure 4.18, the damping is independent of the field, which means, α is
constant for the applied fields Hext. The discrepancies appearing for the measurements
in fields smaller than 90 mT are due to the fact, that precession amplitudes, as can be
seen in figure 4.15, are small, and a precession is hardly recognizable. Furthermore,
only two to three periods are observed in the spectrum. These two effects both make
it more difficult to determine the appropriate decay time τα, so that the error for the
estimated α values in the small external fields is about twice as big as the calculated
one.

The results show that dysprosium is a better damping material than palladium. The
depiction in figure 4.19 makes it clear. One percent of dysprosium already has the
effect of two percent of palladium impurities in the permalloy layer. The doping with
dysprosium increases the damping parameter α by about 50% per one percent of im-
purity. The results obtained performing these experiments, prove consistent with other
experiments examining rare earth doped permalloy samples for damping.

Damping effects on rare earth doped permalloy were examined systematically by
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Figure 4.16: Precession frequencies for the differently doped permalloy samples, ex-
tracted from the measured spectra.

Figure 4.17: Anisotropy fields Hani for the different impurities and amounts.
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Figure 4.18: The damping parameter α for the permalloy samples with different dop-
ing. Calculated using equation 4.3.

Figure 4.19: Comparision of the mean damping parameters for the differently doped
samples.
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Bailey et al. [21, 20, 22, 4] using the FMR technique. Samples were usually prepared
using the cosputtering technique, obtaining permalloy thin films of 50 nm thickness
with a uniform distribution of the impurities, give a damping parameter α = 0.008. In
2006, Bailey et al. determined how the ion implantation technique, widely used in the
semiconductor industry, can be used to produce low concentration impurity implan-
tations into permalloy with a constant impurity concentration throughout the whole
sample thickness [4]. Experiments with these samples reproduced the damping pa-
rameter values again. In [20] the estimated damping parameter is 0.014 < α < 0.043
for samples doped with from 1% to 6% dysprosium. This agrees with the values de-
termined in our all optical experiments. For the 1% dysprosium-doped sample, the
damping is α = 0.014 and raises to α = 0.02 for the 2% dysprosium doped sample.
There was no data found to compare the impact of palladium on the damping pa-
rameter, yet the extrinsic damping with transition metals is smaller than that of rare
earths.

A novel theoretical explanation attempt for the additional extrinsic damping caused
by rare earth impurities has been recently made by Hohlfeld [19]. Usually the s-d
model has been chosen to describe the increase of damping by rare earth impurities.
However, this model does not match the experimental data in [20]. The experiments
show no increase in damping for samples doped with europium and gadolinium, but
a constant ascent in damping for rare earth dopants from gadolinium to holonium.
As far as europium and gadolinium are concerned, the s-d model also predicts no
extrinsic damping for these. The failure of the s-d model begins, for the elements
from terbium to ytterbium. The experimentally observed damping enhancement for
terbium is slightly higher than predicted by the s-d model. For the following elemets
the damping enhancement even decreases in the s-d model, which is contrary to the
experimental observations. The orbit-orbit model matches the experimental data for
the elements europium to holomium and predicts a decreasing influence on damping
for ytterbium. That is why Hohlfeld suggests this model, which accounts orbit-orbit
coupling between the conduction electrons and the impurity ions. The conduction
electrons orbital momentum of the ferromagnetic layer is coupled to the f electrons
orbital momentum of the rare earth impuritiy in this model he found out a dependance
of α ∝ (gJ −2)4. Magnetic moments need to be derived from their degrees of freedom.
For the macro spin approximation the damping due to orbit-orbit coupling is of Gilbert
form. The approach in this model is to apply a hamiltonian for the conduction, f and
d electrons:

Ĥ = Ĥe + Ĥf + Ĥd. (4.23)

This model should only hold for heavier rare earth metals, starting with samarium. It
might fail for lighter elements, like cerium, where the fluctuations from valence elec-
trons become significant. The first hamiltonian, the conduction electron hamiltonian
Ĥe =

∑
k,σ εk,σa

†
k,σak,σ, consists of the creation an annihilation operators with momen-

tum k and spin σ and the energy εk,σ of the conduction electrons including the Zeeman
term. Secondly, for the localized rare-earth f electrons the kondo hamiltonian

Ĥf = ΓSe · Sf + λLe · Lf − μf · H . (4.24)
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holds. Here the Se/f and the Le/f are the spin and angular momentum, respectively.
The first term, the spin-spin term is the s-f coupling used to reproduce the Curie tem-
peratures in rare-earth metals. The prefactor Γ is of the order 0.1 eV. The last term is
the Zeeman term. The middle term is essential for this model orbit-orbit. In order to
get a nonzero contribution of the orbit-orbit term caused by a single impurity placed
at the center, higher terms of the partial wave expansion for the conduction electron
wave functions need to be included. The orbit-orbit prefactor λ is assumed to be a
function relative to the angles of the k vectors, this means that it is usually zero, ex-
cept for k near the Fermi level. The unknown magnitude of λ is expected to be of the
order of Γ. The two neglected terms in this model are first the spin-orbit term Se ·Lf ,
because the crystalline electric field effect in transition metals is less than 0.1 meV.
Apart from these, there is the spin-orbit coupling Sf · Lf of the f electrons, which are
in their ground state at room temperature, therefore this term does not contribute to
the damping. The third hamiltonian in this compound, the Anderson Hamiltonian, for
the host transition-metal ions in the absence of a Zeeman term is

Ĥd = εdd
†
σdσ +

∑
k

Vkd(a
†
k,σdσ + d†

σak,σ) +
U

8
ρ2 − U

2
Sd · Sd − μd · H , (4.25)

with Sd being the spin operator of the d host electrons and the orbital momentum
assumed to be quenched. Vkd, the virtual mixing parameter is of the order of 1 eV
to 10 eV for transition metals, comparable to the Coulomb potential U . In order to
establish spin independent orbit-orbit coupling between the d electrons and the f ions,
the hybridization term between the conduction and d electrons is essential. For a
decreasing Vkd, the localization of the magnetic moments increases and control the
extent to which rare-earth-metal impurities enhance damping.

Conforming with this model, there is no additional damping by gadolinium impu-
rities, since Lf = 0 as found out experimentally in [20]. Also doping with europium
does not increase the damping. In this case it is believed that there are Eu2+(4f 7)
and not Eu3+(4f 6) ions present, because then the f orbital moment is also zero. Also
the double ionized state of ytterbium should not contribute to the damping. Besides
this, the damping should increase when going from gadolinium to holonium, as the
number of f moments increases.

For the palladium-doped sample the s-d model with the hamiltonian should hold:

Ĥ = −JSe · Sd − μd · Sd. (4.26)

This model predicts a smaller damping due to the smaller energies contributed as it is
seen in the experiment.

4.5 Chapter Summary

The results show that all-optical pump probe experiments are a powerful tool to char-
acterize magnetization dynamics on the sub nanosecond time scale, directly in the
time domain.
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Two different mechanisms for extrinsic damping have been introduced. One possi-
bility is to increase the damping non-locally. The limits of the all-optical pump-probe
technique arise from the penetration depth of the laser pulse for different materials. In
the above examination of the sample damped with vanadium, the normal metal layer
thickness was limited to 6 nm.

A qualitative explanation for the increase of damping in thin nickel layers below
10 nm was found and confirmed with Kerr microscopy. The experiments with vana-
dium as a non-local normal metal damping layer confirmed the spin-current theory,
which predicts no significant increase in damping compared to the intrinsic damping
of nickel and disqualifies vanadium as a damping material for non-local damping.

The other method to increase damping is a local one, namely by implementing im-
purities into the ferromagnetic material. The sample preparation for this method is
technically more difficult to achive. In order to implement a well defined and well
distributed amount of impurities into a material, the deposition rate of both materi-
als needs to be controlled simultaneously. For this purpose, equipment like MBE or
cosputtering units are necessary. These techniques are more complicated and lead to
smaller growth rates.

The magnetization precession damping with rare earths seems to be a promising
way of damping, because the damping increases linearly with the impurity concentra-
tion [20]. Further experiments will prove whether the theoretical approach by Rebei
and Hohlfeld [19] can describe the damping properties for the heavier rare-earths.
One further interesting experiment would be to determine, whether higher impurity
concentrations would increase the damping linearly and to which extend the damping
parameter can be increased.
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All-optical pump-probe experiments have been used to explore magnetization dynam-
ics on the sub nanosecond time scale. This method is advantageous to the FMR tech-
nique, because the dynamics are observed directly in the time domain and do not have
to be extracted from the frequency broadening of the magnetic resonance.

The two damping mechanisms introduced here have been partly examined in FMR
and PIMMS experiments, so that some of the results could be compared directly with
this work. First, the intrinsic damping of nickel was examined in order to have a
reference for the following experiments. The damping parameter determined from the
experiments for nickel layer thicknesses above 10 nm is α = 0.043(5). The observed
increase in damping for layer thicknesses below 10 nm is explained with the magnetic
ripple effect. The damping parameter dependence on the external magnetic field for
the thinner layers is qualitatively explained with Kerr microscopy recordings.

One of the investigated damping mechanisms is the non-local damping. It was in-
troduced with vanadium as a non-local damping layer, attached to a nickel layer. The
low damping enhancement caused by the vanadium is expected and proves that the
spin-current model is a valid explanation of this effect.

The second damping mechanism investigated is local damping by doping the ferro-
magnetic layer with low concentration impurities. The examined ferromagnetic mate-
rial was permalloy. One sample was a 12 nm pure permalloy film, which provided the
reference. The others were two samples doped with 1% and 2% dysprosium, respec-
tively, and one doped with 2% palladium. The dysprosium-doped samples show a large
damping enhancement, as expected for rare earths from the high anisotropy of the 4f
shell. However, also palladium shows an increase in damping. The results obtained in
our experiments are conform with the results obtained by Bailey et al. for dysprosium
damped permalloy [20]. The theoretical model was provided by Rebei and Hohlfeld
[19]. Further experiments will show whether this model, which accounts orbit-orbit
coupling for the damping enhancement caused by rare earth impurities, will hold for
the heavier rare earths.

The results presented in this thesis show that magnetic damping is a broad field to
be yet explored. The experiments carried out and described can be seen as a con-
tinuation of work done in the scope of a previous PhD thesis [7], where non-local
Gilbert damping on nickel thin films with adjacent mainly transition metals as non
magnetic damping layers, including palladium and chromium, as well as dysprosium,
were systematically explored. In this thesis the damping properties of vanadium as a
representative of the light transition metals were studied in contrast to the materials
owning a high damping. Further expansions to use the all-optical approach to various
problems in magnetization dynamics are currently made, by examining magnetization
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dynamics of half-metals on CrO2 and nickel nanostructures [16].

5.1 Future Experiments

With this thesis we started to analyze the non-local damping coming from the 5B
group transition metals. The light vanadium Z = 23 does not cause any significant
additional damping, as was expected from the theoretical model. It still needs to
be confirmed that the damping should increase when going to niobium Z = 41, or to
tantalum Z = 73 in the 5B group; these should both show a larger additional damping,
especially the latter.

Regarding the local damping in permalloy by rare-earths, it would be interesting
to explore whether higher percentages of dysprosium alloyed into the permalloy in-
fluence the damping properties in the same way as found in the FMR experiments.
Further, a systematic analysis, using the rare-earths from Z = 62 to Z = 70 as local
damping materials, would show in how far the orbit-orbit coupling model is appro-
priate to describe damping by heavier rare earths with distinct f electrons. Especially
terbium and holmium are very interesting, since for these materials a huge damping
enhancement is predicted. Knowing these properties will give a better understanding
of how to tailor materials with desired damping properties.

5.2 Other Techniques

One additional and very important technique to probe magnetization dynamics is the
use of synchrotron radiation. Beam lines at synchrotrons can be tuned to use radiation
of desired energies in the range of 100 eV to 1000 eV. The application of circularly
or linearly polarized radiation produced in synchrotron light sources permits separate
examination of the spin and orbital momentum, by tuning the beam energy to the
desired absorption edges of the ferromagnetic material. The advantage of this method
over the all-optical pump-probe experiments is the examination of element-specific sin-
gle layers in multilayer alignments,but the time resolution of synchrotron pulses poses
problems. Synchrotron pulse lengths depend on the electron bunches circulating in the
storage rings. These bunches usually produce x-ray pulses of around 50 ps. In a special
operation mode, called the low-alpha mode, x-ray pulses of only a few picoseconds
duration (5 − 10 ps) can be achieved [2] at BESSY. Even shorter duration pulses can
be created with the method called femtosecond slicing (fs-slicing). It produces x-ray
pulses shorter than 150 fs [1] and is currently used at BESSY to study demagnetization
processes, which happen on the timescale below one picosecond. However, in the fu-
ture, an application of this technique is also imaginable for experiments on timescales
up to one nanosecond, like the ones introduced in this thesis. Then, an examination
of the magnetization dynamics for the ferromagnetic layer considered only could be
recorded without the cross talk of the substrate and the non magnetic damping layer.
This way the increase of the damping parameter for nickel thicknesses below 10 nm on
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one hand, and the difference in damping for different external magnetic fields on the
other hand may be understood better.
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